对python 树状嵌套结构的实现思路详解


Posted in Python onAugust 09, 2019

原始数据

原始数据大致是这样子的:

每条数据中的四个数据分别是 当前节点名称,节点描述(指代一些需要的节点属性),源节点(即最顶层节点),父节点(当前节点上一层节点)。

datas = [
 ["root", "根节点", "root", None],
 ["node1", "一级节点1", "root", "root"],
 ["node2", "一级节点2", "root", "root"],
 ["node11", "二级节点11", "root", "node1"],
 ["node12", "二级节点12", "root", "node1"],
 ["node21", "二级节点21", "root", "node2"],
 ["node22", "二级节点22", "root", "node2"],
]

节点类

抽象封装出一个节点类:

class Node(object):
 def __init__(self, name: str, desc, parent: str, children: list):
 """
 初始化
 :param name:
 :param desc:
 :param parent:
 :param children:
 """
 self.name = name
 self.desc = desc
 self.parent = parent
 self.children = children

 def get_nodes(self):
 """
 获取该节点下的全部结构字典
 """
 d = dict()
 d['name'] = self.name
 d['desc'] = self.desc
 d['parent'] = self.parent
 children = self.get_children()
 if children:
  d['children'] = [child.get_nodes() for child in children]
 return d

 def get_children(self):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.name]

 def __repr__(self):
 return self.name

将原始数据转换为节点对象

nodes = list()
for data in datas:
 node = Node(data[0], data[1], data[-1], [])
 nodes.append(node)

为各个节点建立联系

for node in nodes:
 children_names = [data[0] for data in datas if data[-1] == node.name]
 children = [node for node in nodes if node.name in children_names]
 node.children.extend(children)

测试

root = nodes[0]
print(root)

tree = root.get_nodes()
print(json.dumps(tree, indent=4))

运行结果:

对python 树状嵌套结构的实现思路详解

原始数据也可以是字典的形式:

### fork_tool.py
import json


class Node(object):
 def __init__(self, **kwargs):
 """
 初始化
 :param nodes: 树的全部节点对象
 :param kwargs: 当前节点参数
 """

 self.forked_id = kwargs.get("forked_id")
 self.max_drawdown = kwargs.get("max_drawdown")
 self.annualized_returns = kwargs.get("annualized_returns")
 self.create_time = kwargs.get("create_time")
 self.desc = kwargs.get("desc")
 self.origin = kwargs.get("origin")
 self.parent = kwargs.get("parent")
 self.children = kwargs.get("children", [])

 def get_nodes(self, nodes):
 """
 获取该节点下的全部结构字典,即建立树状联系
 """
 d = dict()
 d['forked_id'] = self.forked_id
 d['max_drawdown'] = self.max_drawdown
 d['annualized_returns'] = self.annualized_returns
 d['create_time'] = self.create_time
 d['desc'] = self.desc
 d['origin'] = self.origin
 d['parent'] = self.parent
 children = self.get_children(nodes)
 if children:
  d['children'] = [child.get_nodes(nodes) for child in children]
 return d

 def get_children(self, nodes):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.forked_id]

 # def __repr__(self):
 # return str(self.desc)


def process_datas(datas):
 """
 处理原始数据
 :param datas:
 :return:
 """
 # forked_infos.append({"forked_id": str(forked_strategy.get("_id")),
 # "max_drawdown": max_drawdown,
 # "annualized_returns": annualized_returns,
 # "create_time": create_time, # 分支创建时间
 # "desc": desc,
 # "origin": origin,
 # "parent": parent,
 # "children": [],
 # })

 nodes = []
 # 构建节点列表集
 for data in datas:
 node = Node(**data)
 nodes.append(node)

 # 为各个节点对象建立类 nosql 结构的联系
 for node in nodes:
 children_ids = [data["forked_id"] for data in datas if data["parent"] == node.forked_id]
 children = [node for node in nodes if node.forked_id in children_ids]
 node.children.extend(children)

 return nodes


test_datas = [
 {'annualized_returns': 0.01,
 'children': [],
 'create_time': 1562038393,
 'desc': 'root',
 'forked_id': '5d1ad079e86117f3883f361e',
 'max_drawdown': 0.01,
 'origin': None,
 'parent': None},

 {'annualized_returns': 0.314,
 'children': [],
 'create_time': 1562060612,
 'desc': 'level1',
 'forked_id': '5d1b2744b264566d3f3f3632',
 'max_drawdown': 0.2,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': 0.12,
 'children': [],
 'create_time': 1562060613,
 'desc': 'level11',
 'forked_id': '5d1b2745e86117f3883f3632',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': 0.09,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level12',
 'forked_id': '5d1b2746b264566d3f3f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level2',
 'forked_id': '5d1b2746e86117f3883f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060627,
 'desc': 'level21',
 'forked_id': '5d1b2753b264566d3f3f3635',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2746e86117f3883f3633'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060628,
 'desc': 'level211',
 'forked_id': '5d1b2754b264566d3f3f3637',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060640,
 'desc': 'level212',
 'forked_id': '5d1b2760e86117f3883f3634',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},
]


if __name__ == "__main__":
 nodes = process_datas(test_datas)
 info = nodes[0].get_nodes(nodes)
 print(json.dumps(info, indent=4))

以上这篇对python 树状嵌套结构的实现思路详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中实现远程调用(RPC、RMI)简单例子
Apr 28 Python
python通过pil模块获得图片exif信息的方法
Mar 16 Python
详谈python read readline readlines的区别
Sep 22 Python
Django中login_required装饰器的深入介绍
Nov 24 Python
python实现简易云音乐播放器
Jan 04 Python
python读取xlsx的方法
Dec 25 Python
django 单表操作实例详解
Jul 30 Python
pycharm实现在子类中添加一个父类没有的属性
Mar 12 Python
Python matplotlib实时画图案例
Apr 23 Python
在 Python 中使用 MQTT的方法
Aug 18 Python
python 爬虫之selenium可视化爬虫的实现
Dec 04 Python
再也不用花钱买漫画!Python爬取某漫画的脚本及源码
Jun 09 Python
Python  Django 母版和继承解析
Aug 09 #Python
python实现爬虫抓取小说功能示例【抓取金庸小说】
Aug 09 #Python
python实现BP神经网络回归预测模型
Aug 09 #Python
Django ORM 聚合查询和分组查询实现详解
Aug 09 #Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 #Python
详解Python中的正斜杠与反斜杠
Aug 09 #Python
图文详解Django使用Pycharm连接MySQL数据库
Aug 09 #Python
You might like
php变量范围介绍
2012/10/15 PHP
php压缩HTML函数轻松实现压缩html/js/Css及注意事项
2013/01/27 PHP
MongoDB在PHP中的常用操作小结
2014/02/20 PHP
Codeigniter框架实现获取分页数据和总条数的方法
2014/12/05 PHP
apache php mysql开发环境安装教程
2016/07/28 PHP
详解PHP函数 strip_tags 处理字符串缺陷bug
2017/06/11 PHP
PHP实现字符串的全排列详解
2019/04/24 PHP
PHP 对象接口简单实现方法示例
2020/04/13 PHP
js 颜色选择器(兼容firefox)
2009/03/05 Javascript
12个非常有创意的JavaScript小游戏
2010/03/18 Javascript
网页加载时页面显示进度条加载完成之后显示网页内容
2012/12/23 Javascript
Jquery:ajax实现翻页无刷新功能代码
2013/08/05 Javascript
jquery实现省市select下拉框的替换(示例代码)
2014/02/22 Javascript
javascript中声明函数的方法及调用函数的返回值
2014/07/22 Javascript
解决Jquery下拉框数据动态获取的问题
2018/01/25 jQuery
vue 标签属性数据绑定和拼接的实现方法
2018/05/17 Javascript
Vue.js页面中有多个input搜索框如何实现防抖操作
2019/11/04 Javascript
python 多维切片之冒号和三个点的用法介绍
2018/04/19 Python
Python判断一个文件夹内哪些文件是图片的实例
2018/12/07 Python
Python实现二维曲线拟合的方法
2018/12/29 Python
pytorch 在网络中添加可训练参数,修改预训练权重文件的方法
2019/08/17 Python
基于Python实现船舶的MMSI的获取(推荐)
2019/10/21 Python
Python修改列表值问题解决方案
2020/03/06 Python
python数据处理——对pandas进行数据变频或插值实例
2020/04/22 Python
基于python实现上传文件到OSS代码实例
2020/05/09 Python
HTML5资源预加载(Link prefetch)详细介绍(给你的网页加速)
2014/05/07 HTML / CSS
韩国三星旗下的一家超市连锁店:Home Plus
2016/07/30 全球购物
留学自荐信的技巧
2013/10/17 职场文书
应届生护士求职信
2013/11/01 职场文书
应届大学生求职信
2013/12/01 职场文书
文明城市创建标语
2014/06/16 职场文书
擅自离岗检讨书
2014/09/12 职场文书
励志广播稿300字(5篇)
2014/09/15 职场文书
幼儿园亲子活动通知
2015/04/24 职场文书
防震减灾主题班会
2015/08/14 职场文书
如何用JavaScript学习算法复杂度
2021/04/30 Javascript