对python 树状嵌套结构的实现思路详解


Posted in Python onAugust 09, 2019

原始数据

原始数据大致是这样子的:

每条数据中的四个数据分别是 当前节点名称,节点描述(指代一些需要的节点属性),源节点(即最顶层节点),父节点(当前节点上一层节点)。

datas = [
 ["root", "根节点", "root", None],
 ["node1", "一级节点1", "root", "root"],
 ["node2", "一级节点2", "root", "root"],
 ["node11", "二级节点11", "root", "node1"],
 ["node12", "二级节点12", "root", "node1"],
 ["node21", "二级节点21", "root", "node2"],
 ["node22", "二级节点22", "root", "node2"],
]

节点类

抽象封装出一个节点类:

class Node(object):
 def __init__(self, name: str, desc, parent: str, children: list):
 """
 初始化
 :param name:
 :param desc:
 :param parent:
 :param children:
 """
 self.name = name
 self.desc = desc
 self.parent = parent
 self.children = children

 def get_nodes(self):
 """
 获取该节点下的全部结构字典
 """
 d = dict()
 d['name'] = self.name
 d['desc'] = self.desc
 d['parent'] = self.parent
 children = self.get_children()
 if children:
  d['children'] = [child.get_nodes() for child in children]
 return d

 def get_children(self):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.name]

 def __repr__(self):
 return self.name

将原始数据转换为节点对象

nodes = list()
for data in datas:
 node = Node(data[0], data[1], data[-1], [])
 nodes.append(node)

为各个节点建立联系

for node in nodes:
 children_names = [data[0] for data in datas if data[-1] == node.name]
 children = [node for node in nodes if node.name in children_names]
 node.children.extend(children)

测试

root = nodes[0]
print(root)

tree = root.get_nodes()
print(json.dumps(tree, indent=4))

运行结果:

对python 树状嵌套结构的实现思路详解

原始数据也可以是字典的形式:

### fork_tool.py
import json


class Node(object):
 def __init__(self, **kwargs):
 """
 初始化
 :param nodes: 树的全部节点对象
 :param kwargs: 当前节点参数
 """

 self.forked_id = kwargs.get("forked_id")
 self.max_drawdown = kwargs.get("max_drawdown")
 self.annualized_returns = kwargs.get("annualized_returns")
 self.create_time = kwargs.get("create_time")
 self.desc = kwargs.get("desc")
 self.origin = kwargs.get("origin")
 self.parent = kwargs.get("parent")
 self.children = kwargs.get("children", [])

 def get_nodes(self, nodes):
 """
 获取该节点下的全部结构字典,即建立树状联系
 """
 d = dict()
 d['forked_id'] = self.forked_id
 d['max_drawdown'] = self.max_drawdown
 d['annualized_returns'] = self.annualized_returns
 d['create_time'] = self.create_time
 d['desc'] = self.desc
 d['origin'] = self.origin
 d['parent'] = self.parent
 children = self.get_children(nodes)
 if children:
  d['children'] = [child.get_nodes(nodes) for child in children]
 return d

 def get_children(self, nodes):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.forked_id]

 # def __repr__(self):
 # return str(self.desc)


def process_datas(datas):
 """
 处理原始数据
 :param datas:
 :return:
 """
 # forked_infos.append({"forked_id": str(forked_strategy.get("_id")),
 # "max_drawdown": max_drawdown,
 # "annualized_returns": annualized_returns,
 # "create_time": create_time, # 分支创建时间
 # "desc": desc,
 # "origin": origin,
 # "parent": parent,
 # "children": [],
 # })

 nodes = []
 # 构建节点列表集
 for data in datas:
 node = Node(**data)
 nodes.append(node)

 # 为各个节点对象建立类 nosql 结构的联系
 for node in nodes:
 children_ids = [data["forked_id"] for data in datas if data["parent"] == node.forked_id]
 children = [node for node in nodes if node.forked_id in children_ids]
 node.children.extend(children)

 return nodes


test_datas = [
 {'annualized_returns': 0.01,
 'children': [],
 'create_time': 1562038393,
 'desc': 'root',
 'forked_id': '5d1ad079e86117f3883f361e',
 'max_drawdown': 0.01,
 'origin': None,
 'parent': None},

 {'annualized_returns': 0.314,
 'children': [],
 'create_time': 1562060612,
 'desc': 'level1',
 'forked_id': '5d1b2744b264566d3f3f3632',
 'max_drawdown': 0.2,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': 0.12,
 'children': [],
 'create_time': 1562060613,
 'desc': 'level11',
 'forked_id': '5d1b2745e86117f3883f3632',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': 0.09,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level12',
 'forked_id': '5d1b2746b264566d3f3f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level2',
 'forked_id': '5d1b2746e86117f3883f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060627,
 'desc': 'level21',
 'forked_id': '5d1b2753b264566d3f3f3635',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2746e86117f3883f3633'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060628,
 'desc': 'level211',
 'forked_id': '5d1b2754b264566d3f3f3637',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060640,
 'desc': 'level212',
 'forked_id': '5d1b2760e86117f3883f3634',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},
]


if __name__ == "__main__":
 nodes = process_datas(test_datas)
 info = nodes[0].get_nodes(nodes)
 print(json.dumps(info, indent=4))

以上这篇对python 树状嵌套结构的实现思路详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python备份Mysql脚本
Aug 11 Python
Python中SOAP项目的介绍及其在web开发中的应用
Apr 14 Python
利用Fn.py库在Python中进行函数式编程
Apr 22 Python
Python格式化输出%s和%d
May 07 Python
python自动保存百度盘资源到百度盘中的实例代码
Aug 26 Python
基于Python实现ComicReaper漫画自动爬取脚本过程解析
Nov 11 Python
python读取xml文件方法解析
Aug 04 Python
pandas参数设置的实用小技巧
Aug 23 Python
python入门教程之基本算术运算符
Nov 13 Python
Python用access判断文件是否被占用的实例方法
Dec 17 Python
查找适用于matplotlib的中文字体名称与实际文件名对应关系的方法
Jan 05 Python
Pygame Rect区域位置的使用(图文)
Nov 17 Python
Python  Django 母版和继承解析
Aug 09 #Python
python实现爬虫抓取小说功能示例【抓取金庸小说】
Aug 09 #Python
python实现BP神经网络回归预测模型
Aug 09 #Python
Django ORM 聚合查询和分组查询实现详解
Aug 09 #Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 #Python
详解Python中的正斜杠与反斜杠
Aug 09 #Python
图文详解Django使用Pycharm连接MySQL数据库
Aug 09 #Python
You might like
ajax+php打造进度条 readyState各状态
2010/03/20 PHP
php函数重载的替代方法--伪重载详解
2015/05/08 PHP
javascript中xml操作实现代码
2011/11/21 Javascript
js汉字转拼音实现代码
2013/02/06 Javascript
ie下$.getJSON出现问题的解决方法
2014/02/12 Javascript
浏览器窗口大小变化时使用resize事件对框架不起作用的解决方法
2014/05/11 Javascript
Node.js的特点和应用场景介绍
2014/11/04 Javascript
JavaScript中的数组特性介绍
2014/12/30 Javascript
Angularjs全局变量被作用域监听的正确姿势
2016/02/06 Javascript
Ionic如何实现下拉刷新与上拉加载功能
2016/06/03 Javascript
JS简单实现仿百度控制台输出信息效果
2016/09/04 Javascript
IntersectionObserver API 详解篇
2016/12/11 Javascript
javascript 删除数组元素和清空数组的简单方法
2017/02/24 Javascript
深入探究node之Transform
2017/07/20 Javascript
JS使用setInterval实现的简单计时器功能示例
2018/04/19 Javascript
vue组件实现可搜索下拉框扩展
2020/10/23 Javascript
es6 filter() 数组过滤方法总结
2019/04/03 Javascript
node.js中stream流中可读流和可写流的实现与使用方法实例分析
2020/02/13 Javascript
JS继承定义与使用方法简单示例
2020/02/19 Javascript
解决vue的router组件component在import时不能使用变量问题
2020/07/26 Javascript
[05:48]DOTA2英雄梦之声vol21 屠夫
2014/06/20 DOTA
[50:34]VGJ.T vs Fnatic 2018国际邀请赛小组赛BO2 第二场 8.16
2018/08/17 DOTA
Python3使用PyQt5制作简单的画板/手写板实例
2017/10/19 Python
Python MySQLdb 使用utf-8 编码插入中文数据问题
2018/03/13 Python
python实现转圈打印矩阵
2019/03/02 Python
详解css3中的伪类before和after常见用法
2020/11/17 HTML / CSS
html5简介_动力节点Java学院整理
2017/07/07 HTML / CSS
HTML5实现直播间评论滚动效果的代码
2020/05/27 HTML / CSS
Giglio英国站:意大利奢侈品购物网
2018/03/06 全球购物
C#面试题问题集
2016/04/02 面试题
C#中的验证控件有几种
2014/03/08 面试题
解除劳动合同协议书范本
2014/04/14 职场文书
个人四风问题原因分析及整改措施
2014/09/28 职场文书
2015年度保密工作总结
2015/04/24 职场文书
《平移和旋转》教学反思
2016/02/19 职场文书
MySql存储过程之逻辑判断和条件控制
2021/05/26 MySQL