python实现BP神经网络回归预测模型


Posted in Python onAugust 09, 2019

神经网络模型一般用来做分类,回归预测模型不常见,本文基于一个用来分类的BP神经网络,对它进行修改,实现了一个回归模型,用来做室内定位。模型主要变化是去掉了第三层的非线性转换,或者说把非线性激活函数Sigmoid换成f(x)=x函数。这样做的主要原因是Sigmoid函数的输出范围太小,在0-1之间,而回归模型的输出范围较大。模型修改如下:

python实现BP神经网络回归预测模型

python实现BP神经网络回归预测模型

代码如下:

#coding: utf8
''''
author: Huangyuliang
'''
import json
import random
import sys
import numpy as np
 
#### Define the quadratic and cross-entropy cost functions
class CrossEntropyCost(object):
 
  @staticmethod
  def fn(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
  @staticmethod
  def delta(z, a, y):
    return (a-y)
 
#### Main Network class
class Network(object):
 
  def __init__(self, sizes, cost=CrossEntropyCost):
 
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.default_weight_initializer()
    self.cost=cost
 
  def default_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)/np.sqrt(x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def large_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def feedforward(self, a):
    """Return the output of the network if ``a`` is input."""
    for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1层
      a = sigmoid(np.dot(w, a)+b)
 
    b = self.biases[-1]  # 最后一层
    w = self.weights[-1]
    a = np.dot(w, a)+b
    return a
 
  def SGD(self, training_data, epochs, mini_batch_size, eta,
      lmbda = 0.0,
      evaluation_data=None,
      monitor_evaluation_accuracy=False): # 用随机梯度下降算法进行训练
 
    n = len(training_data)
 
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]
      
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))
      print ("Epoch %s training complete" % j)
      
      if monitor_evaluation_accuracy:
        print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j))
     
  def update_mini_batch(self, mini_batch, eta, lmbda, n):
    """Update the network's weights and biases by applying gradient
    descent using backpropagation to a single mini batch. The
    ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the
    learning rate, ``lmbda`` is the regularization parameter, and
    ``n`` is the total size of the training data set.
    """
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]
 
  def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. ``nabla_b`` and
    ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
    to ``self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases[:-1], self.weights[:-1]):  # 正向传播 前n-1层
 
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
# 最后一层,不用非线性
    b = self.biases[-1]
    w = self.weights[-1]
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = z
    activations.append(activation)
    # backward pass 反向传播
    delta = (self.cost).delta(zs[-1], activations[-1], y)  # 误差 Tj - Oj 
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1)
 
    for l in xrange(2, self.num_layers):
      z = zs[-l]  # w*a + b
      sp = sigmoid_prime(z) # z * (1-z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隐藏层误差
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oi
    return (nabla_b, nabla_w)
 
  def accuracy(self, data):
 
    results = [(self.feedforward(x), y) for (x, y) in data] 
    alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results]
 
    return np.mean(alist)
 
  def save(self, filename):
    """Save the neural network to the file ``filename``."""
    data = {"sizes": self.sizes,
        "weights": [w.tolist() for w in self.weights],
        "biases": [b.tolist() for b in self.biases],
        "cost": str(self.cost.__name__)}
    f = open(filename, "w")
    json.dump(data, f)
    f.close()
 
#### Loading a Network
def load(filename):
  """Load a neural network from the file ``filename``. Returns an
  instance of Network.
  """
  f = open(filename, "r")
  data = json.load(f)
  f.close()
  cost = getattr(sys.modules[__name__], data["cost"])
  net = Network(data["sizes"], cost=cost)
  net.weights = [np.array(w) for w in data["weights"]]
  net.biases = [np.array(b) for b in data["biases"]]
  return net
 
def sigmoid(z):
  """The sigmoid function.""" 
  return 1.0/(1.0+np.exp(-z))
 
def sigmoid_prime(z):
  """Derivative of the sigmoid function."""
  return sigmoid(z)*(1-sigmoid(z))

调用神经网络进行训练并保存参数:

#coding: utf8
import my_datas_loader_1
import network_0
 
training_data,test_data = my_datas_loader_1.load_data_wrapper()
#### 训练网络,保存训练好的参数
net = network_0.Network([14,100,2],cost = network_0.CrossEntropyCost)
net.large_weight_initializer()
net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True)
filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt'
net.save(filename)

第190-199轮训练结果如下:

python实现BP神经网络回归预测模型

调用保存好的参数,进行定位预测:

#coding: utf8
import my_datas_loader_1
import network_0
import matplotlib.pyplot as plt
 
test_data = my_datas_loader_1.load_test_data()
#### 调用训练好的网络,用来进行预测
filename=r'D:\Workspase\Nerual_networks\parameters.txt'   ## 文件保存训练好的参数
net = network_0.load(filename)                ## 调用参数,形成网络
fig=plt.figure(1)
ax=fig.add_subplot(1,1,1)
ax.axis("equal") 
# plt.grid(color='b' , linewidth='0.5' ,linestyle='-')    # 添加网格
x=[-0.3,-0.3,-17.1,-17.1,-0.3]                ## 这是九楼地形的轮廓
y=[-0.3,26.4,26.4,-0.3,-0.3]
m=[1.5,1.5,-18.9,-18.9,1.5]
n=[-2.1,28.2,28.2,-2.1,-2.1]
ax.plot(x,y,m,n,c='k')
 
for i in range(len(test_data)):  
  pre = net.feedforward(test_data[i][0]) # pre 是预测出的坐标    
  bx=pre[0]
  by=pre[1]          
  ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散点图  
  plt.pause(0.001)
plt.show()

定位精度达到了1.5米左右。定位效果如下图所示:

python实现BP神经网络回归预测模型

真实路径为行人从原点绕环形走廊一圈。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python学习笔记之os模块使用总结
Nov 03 Python
python实现简易版计算器
Jun 22 Python
python re模块的高级用法详解
Jun 06 Python
在PyCharm下使用 ipython 交互式编程的方法
Jan 17 Python
详解Python做一个名片管理系统
Mar 14 Python
Python箱型图处理离群点的例子
Dec 09 Python
python 实现将Numpy数组保存为图像
Jan 09 Python
Python爬虫程序架构和运行流程原理解析
Mar 09 Python
python数据库操作mysql:pymysql、sqlalchemy常见用法详解
Mar 30 Python
Python基于unittest实现测试用例执行
Nov 25 Python
Python+uiautomator2实现自动刷抖音视频功能
Apr 29 Python
opencv深入浅出了解机器学习和深度学习
Mar 17 Python
Django ORM 聚合查询和分组查询实现详解
Aug 09 #Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 #Python
详解Python中的正斜杠与反斜杠
Aug 09 #Python
图文详解Django使用Pycharm连接MySQL数据库
Aug 09 #Python
Django ORM多对多查询方法(自定义第三张表&ManyToManyField)
Aug 09 #Python
Django使用Jinja2模板引擎的示例代码
Aug 09 #Python
在Django admin中编辑ManyToManyField的实现方法
Aug 09 #Python
You might like
php 模拟GMAIL,HOTMAIL(MSN),YAHOO,163,126邮箱登录的详细介绍
2013/06/18 PHP
PHP strstr 函数判断字符串是否否存在的实例代码
2013/09/28 PHP
php实现上传图片生成缩略图示例
2014/04/13 PHP
如何利用http协议发布博客园博文评论
2015/08/03 PHP
深入理解PHP 数组之count 函数
2016/06/13 PHP
PHP实现上一篇下一篇的方法实例总结
2016/09/22 PHP
php结合ajax实现手机发红包的案例
2016/10/13 PHP
PHP云打印类完整示例
2016/10/15 PHP
jQuery阻止冒泡和HTML默认操作
2010/11/17 Javascript
20款超赞的jQuery插件 Web开发人员必备
2011/02/26 Javascript
jQuery操作Select选择的Text和Value(获取/设置/添加/删除)
2013/03/06 Javascript
javascript定义变量时有var和没有var的区别探讨
2014/07/21 Javascript
JavaScript实现in-place思想的快速排序方法
2016/08/07 Javascript
Bootstrop实现多级下拉菜单功能
2016/11/24 Javascript
JS基于面向对象实现的拖拽功能示例
2016/12/20 Javascript
利用Vue.js框架实现火车票查询系统(附源码)
2017/02/27 Javascript
bootstrap+jQuery实现的动态进度条功能示例
2017/05/25 jQuery
详解Webstorm 新建.vue文件支持高亮vue语法和es6语法
2017/10/26 Javascript
axios进阶实践之利用最优雅的方式写ajax请求
2017/12/20 Javascript
Vue 中使用 CSS Modules优雅方法
2018/04/09 Javascript
jQuery实现鼠标点击处心形漂浮的炫酷效果示例
2018/04/12 jQuery
JavaScript设计模式之单例模式原理与用法实例分析
2018/07/26 Javascript
微信小程序开发实现的选项卡(窗口顶部/底部TabBar)页面切换功能图文详解
2019/05/14 Javascript
基于jquery实现的tab选项卡功能示例【附源码下载】
2019/06/10 jQuery
使用element-ui的el-menu导航选中后刷新页面保持当前选中状态
2019/07/19 Javascript
[00:52]玛尔斯技能全介绍
2019/03/06 DOTA
Python自定义scrapy中间模块避免重复采集的方法
2015/04/07 Python
Python使用剪切板的方法
2017/06/06 Python
Python模拟浏览器上传文件脚本的方法(Multipart/form-data格式)
2018/10/22 Python
Python txt文件加入字典并查询的方法
2019/01/15 Python
详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决
2019/04/17 Python
python 执行终端/控制台命令的例子
2019/07/12 Python
跟班学习心得体会(共6篇)
2016/01/23 职场文书
《平行四边形的面积》教学反思
2016/02/16 职场文书
在pycharm中无法import所安装的库解决方案
2021/05/31 Python
nginx作grpc的反向代理踩坑总结
2021/07/07 Servers