python实现BP神经网络回归预测模型


Posted in Python onAugust 09, 2019

神经网络模型一般用来做分类,回归预测模型不常见,本文基于一个用来分类的BP神经网络,对它进行修改,实现了一个回归模型,用来做室内定位。模型主要变化是去掉了第三层的非线性转换,或者说把非线性激活函数Sigmoid换成f(x)=x函数。这样做的主要原因是Sigmoid函数的输出范围太小,在0-1之间,而回归模型的输出范围较大。模型修改如下:

python实现BP神经网络回归预测模型

python实现BP神经网络回归预测模型

代码如下:

#coding: utf8
''''
author: Huangyuliang
'''
import json
import random
import sys
import numpy as np
 
#### Define the quadratic and cross-entropy cost functions
class CrossEntropyCost(object):
 
  @staticmethod
  def fn(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
  @staticmethod
  def delta(z, a, y):
    return (a-y)
 
#### Main Network class
class Network(object):
 
  def __init__(self, sizes, cost=CrossEntropyCost):
 
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.default_weight_initializer()
    self.cost=cost
 
  def default_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)/np.sqrt(x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def large_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def feedforward(self, a):
    """Return the output of the network if ``a`` is input."""
    for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1层
      a = sigmoid(np.dot(w, a)+b)
 
    b = self.biases[-1]  # 最后一层
    w = self.weights[-1]
    a = np.dot(w, a)+b
    return a
 
  def SGD(self, training_data, epochs, mini_batch_size, eta,
      lmbda = 0.0,
      evaluation_data=None,
      monitor_evaluation_accuracy=False): # 用随机梯度下降算法进行训练
 
    n = len(training_data)
 
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]
      
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))
      print ("Epoch %s training complete" % j)
      
      if monitor_evaluation_accuracy:
        print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j))
     
  def update_mini_batch(self, mini_batch, eta, lmbda, n):
    """Update the network's weights and biases by applying gradient
    descent using backpropagation to a single mini batch. The
    ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the
    learning rate, ``lmbda`` is the regularization parameter, and
    ``n`` is the total size of the training data set.
    """
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]
 
  def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. ``nabla_b`` and
    ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
    to ``self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases[:-1], self.weights[:-1]):  # 正向传播 前n-1层
 
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
# 最后一层,不用非线性
    b = self.biases[-1]
    w = self.weights[-1]
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = z
    activations.append(activation)
    # backward pass 反向传播
    delta = (self.cost).delta(zs[-1], activations[-1], y)  # 误差 Tj - Oj 
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1)
 
    for l in xrange(2, self.num_layers):
      z = zs[-l]  # w*a + b
      sp = sigmoid_prime(z) # z * (1-z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隐藏层误差
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oi
    return (nabla_b, nabla_w)
 
  def accuracy(self, data):
 
    results = [(self.feedforward(x), y) for (x, y) in data] 
    alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results]
 
    return np.mean(alist)
 
  def save(self, filename):
    """Save the neural network to the file ``filename``."""
    data = {"sizes": self.sizes,
        "weights": [w.tolist() for w in self.weights],
        "biases": [b.tolist() for b in self.biases],
        "cost": str(self.cost.__name__)}
    f = open(filename, "w")
    json.dump(data, f)
    f.close()
 
#### Loading a Network
def load(filename):
  """Load a neural network from the file ``filename``. Returns an
  instance of Network.
  """
  f = open(filename, "r")
  data = json.load(f)
  f.close()
  cost = getattr(sys.modules[__name__], data["cost"])
  net = Network(data["sizes"], cost=cost)
  net.weights = [np.array(w) for w in data["weights"]]
  net.biases = [np.array(b) for b in data["biases"]]
  return net
 
def sigmoid(z):
  """The sigmoid function.""" 
  return 1.0/(1.0+np.exp(-z))
 
def sigmoid_prime(z):
  """Derivative of the sigmoid function."""
  return sigmoid(z)*(1-sigmoid(z))

调用神经网络进行训练并保存参数:

#coding: utf8
import my_datas_loader_1
import network_0
 
training_data,test_data = my_datas_loader_1.load_data_wrapper()
#### 训练网络,保存训练好的参数
net = network_0.Network([14,100,2],cost = network_0.CrossEntropyCost)
net.large_weight_initializer()
net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True)
filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt'
net.save(filename)

第190-199轮训练结果如下:

python实现BP神经网络回归预测模型

调用保存好的参数,进行定位预测:

#coding: utf8
import my_datas_loader_1
import network_0
import matplotlib.pyplot as plt
 
test_data = my_datas_loader_1.load_test_data()
#### 调用训练好的网络,用来进行预测
filename=r'D:\Workspase\Nerual_networks\parameters.txt'   ## 文件保存训练好的参数
net = network_0.load(filename)                ## 调用参数,形成网络
fig=plt.figure(1)
ax=fig.add_subplot(1,1,1)
ax.axis("equal") 
# plt.grid(color='b' , linewidth='0.5' ,linestyle='-')    # 添加网格
x=[-0.3,-0.3,-17.1,-17.1,-0.3]                ## 这是九楼地形的轮廓
y=[-0.3,26.4,26.4,-0.3,-0.3]
m=[1.5,1.5,-18.9,-18.9,1.5]
n=[-2.1,28.2,28.2,-2.1,-2.1]
ax.plot(x,y,m,n,c='k')
 
for i in range(len(test_data)):  
  pre = net.feedforward(test_data[i][0]) # pre 是预测出的坐标    
  bx=pre[0]
  by=pre[1]          
  ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散点图  
  plt.pause(0.001)
plt.show()

定位精度达到了1.5米左右。定位效果如下图所示:

python实现BP神经网络回归预测模型

真实路径为行人从原点绕环形走廊一圈。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的Supervisor进行进程监控以及自动启动
May 29 Python
Python set集合类型操作总结
Nov 07 Python
举例讲解Python的Tornado框架实现数据可视化的教程
May 02 Python
python 打印出所有的对象/模块的属性(实例代码)
Sep 11 Python
Python实现数据库并行读取和写入实例
Jun 09 Python
python中(str,list,tuple)基础知识汇总
Feb 20 Python
python3.X 抓取火车票信息【修正版】
Jun 19 Python
Python合并多个Excel数据的方法
Jul 16 Python
用于业余项目的8个优秀Python库
Sep 21 Python
python按比例随机切分数据的实现
Jul 11 Python
基于Python 中函数的 收集参数 机制
Dec 21 Python
pytorch之Resize()函数具体使用详解
Feb 27 Python
Django ORM 聚合查询和分组查询实现详解
Aug 09 #Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 #Python
详解Python中的正斜杠与反斜杠
Aug 09 #Python
图文详解Django使用Pycharm连接MySQL数据库
Aug 09 #Python
Django ORM多对多查询方法(自定义第三张表&ManyToManyField)
Aug 09 #Python
Django使用Jinja2模板引擎的示例代码
Aug 09 #Python
在Django admin中编辑ManyToManyField的实现方法
Aug 09 #Python
You might like
汉字转化为拼音(php版)
2006/10/09 PHP
中篇:安装及配置PHP
2006/12/13 PHP
基于Zookeeper的使用详解
2013/05/02 PHP
Session服务器配置指南与使用经验的深入解析
2013/06/17 PHP
PHP中round()函数对浮点数进行四舍五入的方法
2014/11/19 PHP
基于php实现随机合并数组并排序(原排序)
2015/11/26 PHP
php基于curl主动推送最新内容给百度收录的方法
2016/10/14 PHP
原生JS实现Ajax通过POST方式与PHP进行交互的方法示例
2018/05/12 PHP
JavaScript 原型与继承说明
2010/06/09 Javascript
javascript中的if语句使用介绍
2013/11/20 Javascript
JavaScript Math.ceil() 函数使用介绍
2013/12/11 Javascript
利用jquery写的左右轮播图特效
2014/02/12 Javascript
Javascript基础教程之比较操作符
2015/01/18 Javascript
jQuery中trigger()与bind()用法分析
2015/12/18 Javascript
jQuery拖动元素并对元素进行重新排序
2015/12/30 Javascript
实例详解AngularJS实现无限级联动菜单
2016/01/15 Javascript
json格式数据的添加,删除及排序方法
2016/01/21 Javascript
JavaScript判断数组是否存在key的简单实例
2016/08/03 Javascript
JS运动特效之完美运动框架实例分析
2018/01/24 Javascript
jquery根据name取得select选中的值实例(超简单)
2018/01/25 jQuery
ionic2中使用自动生成器的方法
2018/03/04 Javascript
使用validate.js实现表单数据提交前的验证方法
2018/09/04 Javascript
vue中的router-view组件的使用教程
2018/10/23 Javascript
JavaScript跳出循环的三种方法(break, return, continue)
2019/07/30 Javascript
[01:01:31]2018DOTA2亚洲邀请赛3月29日小组赛B组 Mineski VS paiN
2018/03/30 DOTA
python网络编程之读取网站根目录实例
2014/09/30 Python
python连接MySQL数据库实例分析
2015/05/12 Python
横向对比分析Python解析XML的四种方式
2016/03/30 Python
使用Python控制摄像头拍照并发邮件
2019/04/23 Python
节日快乐! Python画一棵圣诞树送给你
2019/12/24 Python
CSS3之边框多颜色Border-color属性使用示例
2013/10/11 HTML / CSS
CSS3 Calc实现滚动条出现页面不跳动问题
2017/09/14 HTML / CSS
英国复古皮包品牌:Beara Beara
2018/07/18 全球购物
副总经理任命书
2014/06/05 职场文书
乡镇党员干部群众路线对照检查材料思想汇报
2014/09/28 职场文书
Python绘制散点图之可视化神器pyecharts
2022/07/07 Python