python实现BP神经网络回归预测模型


Posted in Python onAugust 09, 2019

神经网络模型一般用来做分类,回归预测模型不常见,本文基于一个用来分类的BP神经网络,对它进行修改,实现了一个回归模型,用来做室内定位。模型主要变化是去掉了第三层的非线性转换,或者说把非线性激活函数Sigmoid换成f(x)=x函数。这样做的主要原因是Sigmoid函数的输出范围太小,在0-1之间,而回归模型的输出范围较大。模型修改如下:

python实现BP神经网络回归预测模型

python实现BP神经网络回归预测模型

代码如下:

#coding: utf8
''''
author: Huangyuliang
'''
import json
import random
import sys
import numpy as np
 
#### Define the quadratic and cross-entropy cost functions
class CrossEntropyCost(object):
 
  @staticmethod
  def fn(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
  @staticmethod
  def delta(z, a, y):
    return (a-y)
 
#### Main Network class
class Network(object):
 
  def __init__(self, sizes, cost=CrossEntropyCost):
 
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.default_weight_initializer()
    self.cost=cost
 
  def default_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)/np.sqrt(x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def large_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def feedforward(self, a):
    """Return the output of the network if ``a`` is input."""
    for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1层
      a = sigmoid(np.dot(w, a)+b)
 
    b = self.biases[-1]  # 最后一层
    w = self.weights[-1]
    a = np.dot(w, a)+b
    return a
 
  def SGD(self, training_data, epochs, mini_batch_size, eta,
      lmbda = 0.0,
      evaluation_data=None,
      monitor_evaluation_accuracy=False): # 用随机梯度下降算法进行训练
 
    n = len(training_data)
 
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]
      
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))
      print ("Epoch %s training complete" % j)
      
      if monitor_evaluation_accuracy:
        print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j))
     
  def update_mini_batch(self, mini_batch, eta, lmbda, n):
    """Update the network's weights and biases by applying gradient
    descent using backpropagation to a single mini batch. The
    ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the
    learning rate, ``lmbda`` is the regularization parameter, and
    ``n`` is the total size of the training data set.
    """
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]
 
  def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. ``nabla_b`` and
    ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
    to ``self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases[:-1], self.weights[:-1]):  # 正向传播 前n-1层
 
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
# 最后一层,不用非线性
    b = self.biases[-1]
    w = self.weights[-1]
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = z
    activations.append(activation)
    # backward pass 反向传播
    delta = (self.cost).delta(zs[-1], activations[-1], y)  # 误差 Tj - Oj 
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1)
 
    for l in xrange(2, self.num_layers):
      z = zs[-l]  # w*a + b
      sp = sigmoid_prime(z) # z * (1-z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隐藏层误差
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oi
    return (nabla_b, nabla_w)
 
  def accuracy(self, data):
 
    results = [(self.feedforward(x), y) for (x, y) in data] 
    alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results]
 
    return np.mean(alist)
 
  def save(self, filename):
    """Save the neural network to the file ``filename``."""
    data = {"sizes": self.sizes,
        "weights": [w.tolist() for w in self.weights],
        "biases": [b.tolist() for b in self.biases],
        "cost": str(self.cost.__name__)}
    f = open(filename, "w")
    json.dump(data, f)
    f.close()
 
#### Loading a Network
def load(filename):
  """Load a neural network from the file ``filename``. Returns an
  instance of Network.
  """
  f = open(filename, "r")
  data = json.load(f)
  f.close()
  cost = getattr(sys.modules[__name__], data["cost"])
  net = Network(data["sizes"], cost=cost)
  net.weights = [np.array(w) for w in data["weights"]]
  net.biases = [np.array(b) for b in data["biases"]]
  return net
 
def sigmoid(z):
  """The sigmoid function.""" 
  return 1.0/(1.0+np.exp(-z))
 
def sigmoid_prime(z):
  """Derivative of the sigmoid function."""
  return sigmoid(z)*(1-sigmoid(z))

调用神经网络进行训练并保存参数:

#coding: utf8
import my_datas_loader_1
import network_0
 
training_data,test_data = my_datas_loader_1.load_data_wrapper()
#### 训练网络,保存训练好的参数
net = network_0.Network([14,100,2],cost = network_0.CrossEntropyCost)
net.large_weight_initializer()
net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True)
filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt'
net.save(filename)

第190-199轮训练结果如下:

python实现BP神经网络回归预测模型

调用保存好的参数,进行定位预测:

#coding: utf8
import my_datas_loader_1
import network_0
import matplotlib.pyplot as plt
 
test_data = my_datas_loader_1.load_test_data()
#### 调用训练好的网络,用来进行预测
filename=r'D:\Workspase\Nerual_networks\parameters.txt'   ## 文件保存训练好的参数
net = network_0.load(filename)                ## 调用参数,形成网络
fig=plt.figure(1)
ax=fig.add_subplot(1,1,1)
ax.axis("equal") 
# plt.grid(color='b' , linewidth='0.5' ,linestyle='-')    # 添加网格
x=[-0.3,-0.3,-17.1,-17.1,-0.3]                ## 这是九楼地形的轮廓
y=[-0.3,26.4,26.4,-0.3,-0.3]
m=[1.5,1.5,-18.9,-18.9,1.5]
n=[-2.1,28.2,28.2,-2.1,-2.1]
ax.plot(x,y,m,n,c='k')
 
for i in range(len(test_data)):  
  pre = net.feedforward(test_data[i][0]) # pre 是预测出的坐标    
  bx=pre[0]
  by=pre[1]          
  ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散点图  
  plt.pause(0.001)
plt.show()

定位精度达到了1.5米左右。定位效果如下图所示:

python实现BP神经网络回归预测模型

真实路径为行人从原点绕环形走廊一圈。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python编写百度贴吧的简单爬虫
Apr 02 Python
Pycharm学习教程(3) 代码运行调试
May 03 Python
python中的内置函数max()和min()及mas()函数的高级用法
Mar 29 Python
python中ASCII码字符与int之间的转换方法
Jul 09 Python
python将print输出的信息保留到日志文件中
Sep 27 Python
python实现图片二值化及灰度处理方式
Dec 07 Python
Python图像处理库PIL的ImageDraw模块介绍详解
Feb 26 Python
python数据库编程 ODBC方式实现通讯录
Mar 27 Python
Python基于yaml文件配置logging日志过程解析
Jun 23 Python
使用Python-OpenCV消除图像中孤立的小区域操作
Jul 05 Python
Python实现为PDF去除水印的示例代码
Apr 03 Python
Python图像处理库PIL详细使用说明
Apr 06 Python
Django ORM 聚合查询和分组查询实现详解
Aug 09 #Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 #Python
详解Python中的正斜杠与反斜杠
Aug 09 #Python
图文详解Django使用Pycharm连接MySQL数据库
Aug 09 #Python
Django ORM多对多查询方法(自定义第三张表&ManyToManyField)
Aug 09 #Python
Django使用Jinja2模板引擎的示例代码
Aug 09 #Python
在Django admin中编辑ManyToManyField的实现方法
Aug 09 #Python
You might like
PHP 冒泡排序算法的实现代码
2010/08/08 PHP
关于php正则匹配汉字的方法介绍
2013/04/25 PHP
php笔记之:初探PHPcms模块开发介绍
2013/04/26 PHP
教你如何用php实现LOL数据远程获取
2014/06/10 PHP
CI框架学习笔记(二) -入口文件index.php
2014/10/27 PHP
thinkPHP+PHPExcel实现读取文件日期的方法(含时分秒)
2016/07/07 PHP
flash 得到自身url参数的代码
2009/11/15 Javascript
Javascript 浮点运算精度问题分析与解决
2014/03/26 Javascript
实例分析js和C#中使用正则表达式匹配a标签
2014/11/26 Javascript
详解JavaScript的Date对象(制作简易钟表)
2020/04/07 Javascript
JavaScript中的this引用(推荐)
2016/08/05 Javascript
关于vuex的学习实践笔记
2017/04/05 Javascript
JS自定义滚动条效果简单实现代码
2020/10/27 Javascript
详解使用webpack构建多页面应用
2017/12/21 Javascript
web页面和微信小程序页面实现瀑布流效果
2018/09/26 Javascript
JS如何生成动态列表
2020/09/22 Javascript
Python程序语言快速上手教程
2012/07/18 Python
Python设计模式之观察者模式实例
2014/04/26 Python
python实现在目录中查找指定文件的方法
2014/11/11 Python
Python计算三角函数之asin()方法的使用
2015/05/15 Python
浅析python中SQLAlchemy排序的一个坑
2017/02/24 Python
详解python使用turtle库来画一朵花
2019/03/21 Python
python多线程与多进程及其区别详解
2019/08/08 Python
python进程池实现的多进程文件夹copy器完整示例
2019/11/27 Python
Python实现结构体代码实例
2020/02/10 Python
python实现最速下降法
2020/03/24 Python
在python中对于bool布尔值的取反操作
2020/12/11 Python
pandas抽取行列数据的几种方法
2020/12/13 Python
某个公司的Java笔面试题
2016/03/11 面试题
房屋买卖委托公证书
2014/04/08 职场文书
个人安全生产承诺书
2014/05/22 职场文书
教师党员岗位承诺书
2014/05/29 职场文书
高中生毕业评语
2014/12/30 职场文书
幼儿园教师师德承诺书
2015/04/28 职场文书
2016年11月份红领巾广播稿
2015/12/21 职场文书
python pyhs2 的安装操作
2021/04/07 Python