横向对比分析Python解析XML的四种方式


Posted in Python onMarch 30, 2016

在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受。

在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter)。

本文将对DOM、SAX、ET、ET_iter四种方式进行横向对比,通过处理相同文件比较各个算法的用时来评估其效率。

程序中将四种解析方法均写为函数,在主程序中分别调用,来评估其解析效率。

解压后的XML文件内容示例为:

横向对比分析Python解析XML的四种方式

主程序函数调用部分代码为:

print("文件计数:%d/%d." % (gz_cnt,paser_num))
  str_s,cnt = dom_parser(gz)
  #str_s,cnt = sax_parser(gz)
  #str_s,cnt = ET_parser(gz)
  #str_s,cnt = ET_parser_iter(gz)
  output.write(str_s)
  vs_cnt += cnt

在最初的函数调用中函数返回两个值,但接收函数调用值时用两个变量分别调用,导致每个函数都要执行两次,之后修改为一次调用两个变量接收返回值,减少了无效调用。

1、DOM解析

函数定义代码:

def dom_parser(gz):
  import gzip,cStringIO
  import xml.dom.minidom
  
  vs_cnt = 0
  str_s = ''
  file_io = cStringIO.StringIO()
  xm = gzip.open(gz,'rb')
  print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
  doc = xml.dom.minidom.parseString(xm.read())
  bulkPmMrDataFile = doc.documentElement
  #读入子元素
  enbs = bulkPmMrDataFile.getElementsByTagName("eNB")
  measurements = enbs[0].getElementsByTagName("measurement")
  objects = measurements[0].getElementsByTagName("object")
  #写入csv文件
  for object in objects:
    vs = object.getElementsByTagName("v")
    vs_cnt += len(vs)
    for v in vs:
      file_io.write(enbs[0].getAttribute("id")+' '+object.getAttribute("id")+' '+\
      object.getAttribute("MmeUeS1apId")+' '+object.getAttribute("MmeGroupId")+' '+object.getAttribute("MmeCode")+' '+\
      object.getAttribute("TimeStamp")+' '+v.childNodes[0].data+'\n') #获取文本值
  str_s = (((file_io.getvalue().replace(' \n','\r\n')).replace(' ',',')).replace('T',' ')).replace('NIL','')
  xm.close()
  file_io.close()
  return (str_s,vs_cnt)

程序运行结果:

**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:107.077867,每秒处理行数:1660。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。

**************************************************
程序处理结束。
由于DOM解析需要将整个文件读入内存,并建立树结构,其内存消耗和时间消耗都比较高,但其优点在于逻辑简单,不需要定义回调函数,便于实现。

2、SAX解析

函数定义代码:

def sax_parser(gz):
  import os,gzip,cStringIO
  from xml.parsers.expat import ParserCreate

  #变量声明
  d_eNB = {}
  d_obj = {}
  s = ''
  global flag 
  flag = False
  file_io = cStringIO.StringIO()
  
  #Sax解析类
  class DefaultSaxHandler(object):
    #处理开始标签
    def start_element(self, name, attrs):
      global d_eNB
      global d_obj
      global vs_cnt
      if name == 'eNB':
        d_eNB = attrs
      elif name == 'object':
        d_obj = attrs
      elif name == 'v':
        file_io.write(d_eNB['id']+' '+ d_obj['id']+' '+d_obj['MmeUeS1apId']+' '+d_obj['MmeGroupId']+' '+d_obj['MmeCode']+' '+d_obj['TimeStamp']+' ')
        vs_cnt += 1
      else:
        pass
    #处理中间文本
    def char_data(self, text):
      global d_eNB
      global d_obj
      global flag
      if text[0:1].isnumeric():
        file_io.write(text)
      elif text[0:17] == 'MR.LteScPlrULQci1':
        flag = True
        #print(text,flag)
      else:
        pass
    #处理结束标签
    def end_element(self, name):
      global d_eNB
      global d_obj
      if name == 'v':
        file_io.write('\n')
      else:
        pass
  
  #Sax解析调用
  handler = DefaultSaxHandler()
  parser = ParserCreate()
  parser.StartElementHandler = handler.start_element
  parser.EndElementHandler = handler.end_element
  parser.CharacterDataHandler = handler.char_data
  vs_cnt = 0
  str_s = ''
  xm = gzip.open(gz,'rb')
  print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
  for line in xm.readlines():
    parser.Parse(line) #解析xml文件内容
    if flag:
      break
  str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','')  #写入解析后内容
  xm.close()
  file_io.close()
  return (str_s,vs_cnt)

程序运行结果:

**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
.........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:14.386779,每秒处理行数:12361。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。

**************************************************
程序处理结束。
SAX解析相比DOM解析,运行时间大幅缩短,由于SAX采用逐行解析,对于处理较大文件其占用内存也少,因此SAX解析是目前应用较多的一种解析方法。其缺点在于需要自己实现回调函数,逻辑较为复杂。

3、ET解析

函数定义代码:

def ET_parser(gz):
  import os,gzip,cStringIO
  import xml.etree.cElementTree as ET

  vs_cnt = 0
  str_s = ''
  file_io = cStringIO.StringIO()
  xm = gzip.open(gz,'rb')
  print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
  tree = ET.ElementTree(file=xm)
  root = tree.getroot()
  for elem in root[1][0].findall('object'):
      for v in elem.findall('v'):
          file_io.write(root[1].attrib['id']+' '+elem.attrib['TimeStamp']+' '+elem.attrib['MmeCode']+' '+\
          elem.attrib['id']+' '+ elem.attrib['MmeUeS1apId']+' '+ elem.attrib['MmeGroupId']+' '+ v.text+'\n')
      vs_cnt += 1
  str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','')  #写入解析后内容
  xm.close()
  file_io.close()
  return (str_s,vs_cnt)

程序运行结果:

**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:4.308103,每秒处理行数:41282。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。

**************************************************
程序处理结束。
相较于SAX解析,ET解析时间更短,并且函数实现也比较简单,所以ET具有类似DOM的简单逻辑实现且匹敌SAX的解析效率,因此ET是目前XML解析的首选。

4、ET_iter解析

函数定义代码:

def ET_parser_iter(gz):
  import os,gzip,cStringIO
  import xml.etree.cElementTree as ET

  vs_cnt = 0
  str_s = ''
  file_io = cStringIO.StringIO()
  xm = gzip.open(gz,'rb')
  print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
  d_eNB = {}
  d_obj = {}
  i = 0
  for event,elem in ET.iterparse(xm,events=('start','end')):
    if i >= 2:
      break    
    elif event == 'start':
          if elem.tag == 'eNB':
              d_eNB = elem.attrib
          elif elem.tag == 'object':
        d_obj = elem.attrib
      elif event == 'end' and elem.tag == 'smr':
      i += 1
    elif event == 'end' and elem.tag == 'v':
      file_io.write(d_eNB['id']+' '+d_obj['TimeStamp']+' '+d_obj['MmeCode']+' '+d_obj['id']+' '+\
      d_obj['MmeUeS1apId']+' '+ d_obj['MmeGroupId']+' '+str(elem.text)+'\n')
          vs_cnt += 1
      elem.clear()
  str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','')  #写入解析后内容
  xm.close()
  file_io.close()
  return (str_s,vs_cnt)

程序运行结果:

**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...................................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:3.043805,每秒处理行数:58429。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。

**************************************************
程序处理结束。
在引入了ET_iter解析后,解析效率比ET提升了近50%,而相较于DOM解析更是提升了35倍,在解析效率提升的同时,由于其采用了iterparse这个循序解析的工具,其内存占用也是比较小的。

所以,小伙伴们,请好好利用这几种工具吧。
以上就是本文的全部内容,希望对大家的学习有所帮助。

Python 相关文章推荐
解决pandas 作图无法显示中文的问题
May 24 Python
python统计字母、空格、数字等字符个数的实例
Jun 29 Python
用python实现k近邻算法的示例代码
Sep 06 Python
python复制列表时[:]和[::]之间有什么区别
Oct 16 Python
对Python发送带header的http请求方法详解
Jan 02 Python
python 机器学习之支持向量机非线性回归SVR模型
Jun 26 Python
Python何时应该使用Lambda函数
Jul 02 Python
解决django 新增加用户信息出现错误的问题
Jul 28 Python
python开头的coding设置方法
Aug 08 Python
Django的CVB实例详解
Feb 10 Python
python中numpy.empty()函数实例讲解
Feb 05 Python
pytorch加载预训练模型与自己模型不匹配的解决方案
May 13 Python
python简单实现刷新智联简历
Mar 30 #Python
详解Python迭代和迭代器
Mar 28 #Python
Python读大数据txt
Mar 28 #Python
Python常用的爬虫技巧总结
Mar 28 #Python
Python对数据库操作
Mar 28 #Python
Python字符串切片操作知识详解
Mar 28 #Python
python Django框架实现自定义表单提交
Mar 25 #Python
You might like
php cc攻击代码与防范方法
2012/10/18 PHP
WordPress中获取页面链接和标题的相关PHP函数用法解析
2015/12/17 PHP
详解laravel安装使用Passport(Api认证)
2018/07/27 PHP
Javascript-Mozilla和IE中的一个函数直接量的问题分析
2007/08/12 Javascript
ExtJS扩展 垂直tabLayout实现代码
2009/06/21 Javascript
parseInt parseFloat js字符串转换数字
2010/08/01 Javascript
JS保留两位小数 四舍五入函数的小例子
2013/11/20 Javascript
用javascript读取xml文件读取节点数据
2014/08/12 Javascript
完善的jquery处理机制
2016/02/21 Javascript
JavaScript判断用户名和密码不能为空的实现代码
2016/05/16 Javascript
JavaScript之cookie技术详解
2016/11/18 Javascript
javascript显示系统当前时间代码
2016/12/29 Javascript
jQuery加载及解析XML文件的方法实例分析
2017/01/22 Javascript
React Native仿美团下拉菜单的实例代码
2017/08/08 Javascript
jQuery 实现批量提交表格多行数据的方法
2018/08/09 jQuery
Vue2.5学习笔记之如何在项目中使用和配置Vue
2018/09/26 Javascript
详解Element 指令clickoutside源码分析
2019/02/15 Javascript
python之从文件读取数据到list的实例讲解
2018/04/19 Python
Python实现繁体中文与简体中文相互转换的方法示例
2018/12/18 Python
tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式
2020/01/23 Python
Python2手动安装更新pip过程实例解析
2020/07/16 Python
html5+css3之制作header实例与更新
2020/12/21 HTML / CSS
html5弹跳球示例代码
2013/07/23 HTML / CSS
微信端html5页面调用分享接口示例
2018/03/14 HTML / CSS
CK加拿大官网:Calvin Klein加拿大
2020/03/14 全球购物
SQL Server笔试题
2012/01/10 面试题
什么是Web Service?
2012/07/25 面试题
J2ee常用的设计模式?说明工厂模式
2015/05/21 面试题
铁路个人事迹材料
2014/01/30 职场文书
学生会主席竞聘书
2014/03/31 职场文书
小组口号大全
2014/06/09 职场文书
党的群众路线教育实践活动个人对照检查材料范文
2014/09/25 职场文书
自主招生自荐信格式范文
2015/03/25 职场文书
用电申请报告范文
2015/05/18 职场文书
银行资信证明
2015/06/17 职场文书
安全生产感想
2015/08/07 职场文书