Python常用的爬虫技巧总结


Posted in Python onMarch 28, 2016

用python也差不多一年多了,python应用最多的场景还是web快速开发、爬虫、自动化运维:写过简单网站、写过自动发帖脚本、写过收发邮件脚本、写过简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

import urllib2
 
url = "http://www.baidu.com"
response = urllib2.urlopen(url)
print response.read()

post方法

import urllib
import urllib2
 
url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

2、使用代理IP

    在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2
 
proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()

3、Cookies处理

    cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

import urllib2, cookielib
 
cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

    关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

  手动添加cookie

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; 
kmsign=55d2c12c9b1e3; 
KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)

4、伪装成浏览器

    某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

  1.User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

  2.Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2
 
headers = {
  'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
request = urllib2.Request(
  url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',
  headers = headers
)
print urllib2.urlopen(request).read()

5、页面解析

    对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门:https://3water.com/article/18526.htm

正则表达式在线测试:http://tools.3water.com/regex/javascript

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml:https://3water.com/article/67125.htm

BeautifulSoup:https://3water.com/article/43572.htm

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

    有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip')    1
opener = urllib2.build_opener()
f = opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

import StringIO
import gzip
 
compresseddata = f.read() 
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream) 
print gzipper.read()

8、多线程并发抓取

    单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
  print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
  while True:
    arguments = q.get()
    do_somthing_using(arguments)
    sleep(1)
    q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
  t = Thread(target=working)
  t.setDaemon(True)
  t.start()
#把JOBS排入队列
for i in range(JOBS):
  q.put(i)
#等待所有JOBS完成
q.join()
Python 相关文章推荐
windows环境下tensorflow安装过程详解
Mar 30 Python
Python OpenCV处理图像之滤镜和图像运算
Jul 10 Python
对python修改xml文件的节点值方法详解
Dec 24 Python
python单例设计模式实现解析
Jan 07 Python
Python用input输入列表的实例代码
Feb 07 Python
Python关于反射的实例代码分享
Feb 20 Python
PyQt5-QDateEdit的简单使用操作
Jul 12 Python
如何让PyQt5中QWebEngineView与JavaScript交互
Oct 21 Python
Python下载的11种姿势(小结)
Nov 18 Python
python爬虫中的url下载器用法详解
Nov 30 Python
Python OpenCV中的numpy与图像类型转换操作
Dec 11 Python
利用python Pandas实现批量拆分Excel与合并Excel
May 23 Python
Python对数据库操作
Mar 28 #Python
Python字符串切片操作知识详解
Mar 28 #Python
python Django框架实现自定义表单提交
Mar 25 #Python
python Django批量导入数据
Mar 25 #Python
python Django批量导入不重复数据
Mar 25 #Python
用Python实现斐波那契(Fibonacci)函数
Mar 25 #Python
Python基础教程之正则表达式基本语法以及re模块
Mar 25 #Python
You might like
德生PL330的评价与改造
2021/03/02 无线电
用PHP调用Oracle存储过程
2006/10/09 PHP
PHP抓屏函数实现屏幕快照代码分享
2014/01/02 PHP
ThinkPHP框架安全实现分析
2016/03/14 PHP
深入理解PHP JSON数组与对象
2016/07/19 PHP
PHP使用mysqli同时执行多条sql查询语句的实例
2019/03/22 PHP
Javascript中的数学函数集合
2007/05/08 Javascript
JS 对象介绍
2010/01/20 Javascript
javascript自定义in_array()函数实现方法
2015/08/03 Javascript
jquery实现点击变换导航样式的方法
2015/08/31 Javascript
Bootstrap零基础入门教程(三)
2016/07/18 Javascript
js select实现省市区联动选择
2020/04/17 Javascript
js文件中直接alert()中文出来的是乱码的解决方法
2016/11/01 Javascript
Vue.js开发环境搭建
2016/11/10 Javascript
前端JS面试中常见的算法问题总结
2016/12/23 Javascript
Nginx 配置多站点vhost 的方法
2018/01/07 Javascript
在 Typescript 中使用可被复用的 Vue Mixin功能
2018/04/17 Javascript
JavaScript设计模式之命令模式实例分析
2019/01/16 Javascript
解决Vue项目打包后打开index.html页面显示空白以及图片路径错误的问题
2019/10/25 Javascript
Vue的props父传子的示例代码
2020/05/20 Javascript
微信小程序语音同步智能识别的实现案例代码解析
2020/05/29 Javascript
Openlayers显示瓦片网格信息的方法
2020/09/28 Javascript
解决vue页面刷新,数据丢失的问题
2020/11/24 Vue.js
python实现员工管理系统
2018/01/11 Python
python中的闭包函数
2018/02/09 Python
python实现Excel文件转换为TXT文件
2019/04/28 Python
Python利用requests模块下载图片实例代码
2019/08/12 Python
Tensorflow不支持AVX2指令集的解决方法
2020/02/03 Python
CSS3中的content属性使用示例
2015/07/20 HTML / CSS
英国街头品牌:Bee Inspired Clothing
2018/02/12 全球购物
与C++相比,Java中的数组有什么不同
2014/03/25 面试题
党员十八大心得体会
2014/09/12 职场文书
县委常委班子对照检查材料思想汇报
2014/09/28 职场文书
青年教师个人总结
2015/02/11 职场文书
一文搞懂python异常处理、模块与包
2021/06/26 Python
OpenCV实现普通阈值
2021/11/17 Java/Android