用Python实现斐波那契(Fibonacci)函数


Posted in Python onMarch 25, 2016

Fibonacci斐波那契数列,很简单,就是一个递归嘛,学任何编程语言可能都会做一下这个。

最近在玩Python,在粗略的看了一下Learning Python和Core Python之后,偶然发现网上有个帖子Python程序员的进化写的很有意思。于是打算仿照一篇,那篇帖子用了十余种方法完成一个阶乘函数,我在这里会用九种不同的风格写出一个Fibonacci函数。

要求很简单,输入n,输出第n个Fibonacci数,n为正整数

下面是这九种不同的风格:

1)第一次写程序的Python程序员:

def fib(n):
  return nth fibonacci number

说明:
第一次写程序的人往往遵循人类语言的语法而不是编程语言的语法,就拿我一个编程很猛的哥们来说,他写的第一个判断闰年的程序,里面直接是这么写的:如果year是闰年,输出year是闰年,否则year不是闰年。

2)刚学Python不久的的C程序员:

def fib(n):#{
 if n<=2 :
  return 1;
 else:
  return fib(n-1)+fib(n-2);
#}

说明:
在刚接触Python时,用缩进而非大括号的方式来划分程序块这种方式我是很不适应的,而且每个语句后面没有结束符,所以每次写完一个Python函数之后干的第一件事一般就是一边注释大括号,一边添加漏掉的冒号。

3)懒散的Python程序员:

def fib(n):
  return 1 and n<=2 or fib(n-1)+fib(n-2)

说明:
看了Learning Python之后,才知道Python没有三元操作符?,不过鉴于Python里bool值比较特殊(有点像C,非零即真,非空即真),再加上Python的逻辑语句也是支持短路求值(Short-Circuit Evaluation)的,这就可以写出一个仿?语句出来。

4)更懒的Python程序员:

fib=lambda n:1 if n<=2 else fib(n-1)+fib(n-2)

说明:
lambda关键字我曾在C#和Scheme里面用过,Python里面的lambda比C#里简便,并很像Scheme里的用法,所以很快就适应了。在用Python Shell声明一些小函数时经常用这种写法。

5)刚学完数据结构的Python程序员:

def fib(n):
 x,y=0,1
 while(n):
  x,y,n=y,x+y,n-1
 return x

说明:
前面的Fibonacci函数都是树形递归的实现,哪怕是学一点算法就应该知道这种递归的低效了。在这里从树形递归改为对应的迭代可以把效率提升不少。
Python的元组赋值特性是我很喜欢的一个东东,这玩意可以把代码简化不少。举个例子,以前的tmp=a;a=b;b=tmp;可以直接用一句a,b=b,a实现,既简洁又明了。

6)正在修SICP课程的Python程序员:

def fib(n):
  def fib_iter(n,x,y):
   if n==0 : return x
   else : return fib_iter(n-1,y,x+y)

  return fib_iter(n,0,1)

说明:
在这里我使用了Scheme语言中很常见的尾递归(Tail-recursion)写法。Scheme里面没有迭代,但可以用不变量和尾递归来模拟迭代,从而实现相同的效果。不过我还不清楚Python有没有对尾递归做相应的优化,回头查一查。
PS:看过SICP的同学,一眼就能看出,这个程序其实就是SICP第一章里的一个例子。

7)好耍小聪明的Python程序员:

fib=lambda n,x=0,y=1:x if not n else f(n-1,y,x+y)

说明:
基本的逻辑和上面的例子一样,都是尾递归写法。主要的区别就是利用了Python提供的默认参数和三元操作符,从而把代码简化至一行。至于默认参数,学过C++的同学都知道这玩意,至于C#4.0也引入了这东东。

8)刚修完线性代数的Python程序员:

def fib(n):
 def m1(a,b):
  m=[[],[]]
  m[0].append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m[0].append(a[0][0]*b[0][1]+a[0][1]*b[1][1])
  m[1].append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  m[1].append(a[1][0]*b[1][0]+a[1][1]*b[1][1])
  return m
 def m2(a,b):
  m=[]
  m.append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m.append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  return m
 return m2(reduce(m1,[[[0,1],[1,1]] for i in range(n)]),[[0],[1]])[0]

说明:
这段代码就不像之前的代码那样清晰了,所以先介绍下原理(需要一点线性代数知识):
首先看一下之前的迭代版本的Fibonacci函数,很容易可以发现存在一个变换:y->x, x+y->y。换一个角度,就是[x,y]->[y,x+y]。
在这里,我声明一个二元向量[x,y]T,它通过一个变换得到[y,x+y]T,可以很容易得到变换矩阵是[[1,0],[1,1]],也就是说:[[1,0],[1,1]]*[x,y]T=[y,x+y]T
令二元矩阵A=[[1,0],[1,1]],二元向量x=[0,1]T,容易知道Ax的结果就是下一个Fibonacci数值,即:
Ax=[fib(1),fib(2)]T
亦有:
Ax=[fib(2),fib(3)]T
………………
以此类推,可以得到:

Aⁿx=[fib(n),fib(n-1)]T

也就是说可以通过对二元向量[0,1]T进行n次A变换,从而得到[fib(n),fib(n+1)]T,从而得到fib(n)。

在这里我定义了一个二元矩阵的相乘函数m1,以及一个在二元向量上的变换m2,然后利用reduce操作完成一个连乘操作得到Aⁿx,最后得到fib(n)。

9)准备参加ACM比赛的Python程序员:

def fib(n):
 lhm=[[0,1],[1,1]]
 rhm=[[0],[1]]
 em=[[1,0],[0,1]]
 #multiply two matrixes
 def matrix_mul(lhm,rhm):
  #initialize an empty matrix filled with zero
  result=[[0 for i in range(len(rhm[0]))] for j in range(len(rhm))]
  #multiply loop
  for i in range(len(lhm)):
   for j in range(len(rhm[0])):
    for k in range(len(rhm)):
     result[i][j]+=lhm[i][k]*rhm[k][j]
  return result
 
 def matrix_square(mat):
  return matrix_mul(mat,mat)
 #quick transform
 def fib_iter(mat,n):
  if not n:
   return em
  elif(n%2):
   return matrix_mul(mat,fib_iter(mat,n-1))
  else:
   return matrix_square(fib_iter(mat,n/2))
 return matrix_mul(fib_iter(lhm,n),rhm)[0][0]

说明:

看过上一个fib函数就比较容易理解这一个版本了,这个版本同样采用了二元变换的方式求fib(n)。不过区别在于这个版本的复杂度是lgn,而上一个版本则是线性的。

这个版本的不同之处在于,它定义了一个矩阵的快速求幂操作fib_iter,原理很简单,可以类比自然数的快速求幂方法,所以这里就不多说了。

PS:虽然说是ACM版本,不过说实话我从来没参加过那玩意,毕竟自己算法太水了,那玩意又太高端……只能在这里YY一下鸟~

python中,最基本的那种递归(如下fib1)效率太低了,只要n数字大了运算时间就会很长;而通过将计算的指保存到一个dict中,后面计算时直接拿来使用,这种方式成为备忘(memo),如下面的fib2函数所示,则会发现效率大大提高。

在n=10以内时,fib1和fab2运行时间都很短看不出差异,但当n=40时,就太明显了,fib1运行花了35秒,fab2运行只花费了0.00001秒。
n=40时,输出如下:

jay@jay-linux:~/workspace/python.git/py2014$ python fibonacci.py 
2014-10-16 16:28:35.176396
fib1(40)=102334155
2014-10-16 16:29:10.479953
fib2(40)=102334155
2014-10-16 16:29:10.480035

这两个计算Fibonacci数列的函数,如下:https://github.com/smilejay/python/blob/master/py2014/fibonacci.py

import datetime

def fib1(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib1(n - 1) + fib1(n - 2)
 
known = {0: 0, 1: 1}
 
def fib2(n):
  if n in known:
    return known[n]
 
  res = fib2(n - 1) + fib2(n - 2)
  known[n] = res
  return res

if __name__ == '__main__':
  n = 40
  print(datetime.datetime.now())
  print('fib1(%d)=%d' % (n, fib1(n)))
  print(datetime.datetime.now())
  print('fib2(%d)=%d' % (n, fib2(n)))
  print(datetime.datetime.now())

后记:

由于刚学习Python没多久,所以对其各种特性的掌握还不够熟练。与其说是我在用Python写程序,倒不如说我是在用C,C++,C#或是Scheme来写程序。至于传说中的Pythonic way,我现在还没有什么体会,毕竟还没用Python写过什么真正的程序。
Learning Python和Core Python都是不错的Python入门书籍,前者更适合没有编程基础的人阅读。
Python是最好的初学编程入门语言,没有之一。所以它可以取代Scheme成为MIT的计算机编程入门语言。

Python 相关文章推荐
Python学习之asyncore模块用法实例教程
Sep 29 Python
总结Python编程中函数的使用要点
Mar 20 Python
python中的lambda表达式用法详解
Jun 22 Python
Python语言描述机器学习之Logistic回归算法
Dec 21 Python
django 发送手机验证码的示例代码
Apr 25 Python
Python3 安装PyQt5及exe打包图文教程
Jan 08 Python
Python实现遗传算法(二进制编码)求函数最优值方式
Feb 11 Python
python中的错误如何查看
Jul 08 Python
python 使用递归的方式实现语义图片分割功能
Jul 16 Python
python mock测试的示例
Oct 19 Python
Python 多线程之threading 模块的使用
Apr 14 Python
Django路由层如何获取正确的url
Jul 15 Python
Python基础教程之正则表达式基本语法以及re模块
Mar 25 #Python
详解Python使用simplejson模块解析JSON的方法
Mar 24 #Python
解决Python出现_warn_unsafe_extraction问题的方法
Mar 24 #Python
python 回调函数和回调方法的实现分析
Mar 23 #Python
python 时间戳与格式化时间的转化实现代码
Mar 23 #Python
python各种语言间时间的转化实现代码
Mar 23 #Python
Eclipse中Python开发环境搭建简单教程
Mar 23 #Python
You might like
PHP的FTP学习(一)
2006/10/09 PHP
php 无限级数据JSON格式及JS解析
2010/07/17 PHP
判断php数组是否为索引数组的实现方法
2013/06/13 PHP
PHP使用SOAP扩展实现WebService的方法
2016/04/01 PHP
php array_values 返回数组的所有值详解及实例
2016/11/12 PHP
基于jquery+thickbox仿校内登录注册框
2010/06/07 Javascript
JavaScript中:表达式和语句的区别[译]
2012/09/17 Javascript
jQuery中queue()方法用法实例
2014/12/29 Javascript
Angular 理解module和injector,即依赖注入
2016/09/07 Javascript
Angular.js实现注册系统的实例详解
2016/12/18 Javascript
Angularjs中使用layDate日期控件示例
2017/01/11 Javascript
浅谈JavaScript异步编程
2017/01/20 Javascript
JQuery.dataTables表格插件添加跳转到指定页
2017/06/09 jQuery
Node.js利用js-xlsx处理Excel文件的方法详解
2017/07/05 Javascript
Element input树型下拉框的实现代码
2018/12/21 Javascript
pageGroup.js实现分页功能
2019/07/27 Javascript
layui 地区三级联动 form select 渲染的实例
2019/09/27 Javascript
原生JS实现顶部导航栏显示按钮+搜索框功能
2019/12/25 Javascript
vue实现点击按钮切换背景颜色的示例代码
2020/06/23 Javascript
在Vue 中获取下拉框的文本及选项值操作
2020/08/13 Javascript
Javascript实现贪吃蛇小游戏(含详细注释)
2020/10/23 Javascript
[05:17]DOTA2睡衣妹卖萌求签名 CJ第二天全明星影像
2013/07/28 DOTA
Python代码打开本地.mp4格式文件的方法
2019/01/03 Python
python实现弹跳小球
2019/05/13 Python
详解通过HTML5 Canvas实现图片的平移及旋转变化的方法
2016/03/22 HTML / CSS
应届生服务员求职信
2013/10/31 职场文书
校园报刊亭的创业计划书
2014/01/02 职场文书
企业项目策划书
2014/01/11 职场文书
西式婚礼证婚词
2014/01/12 职场文书
市政施工员自我鉴定
2014/01/15 职场文书
应聘医药销售自荐书范文
2014/02/08 职场文书
最经典的大学生职业生涯规划范文
2014/03/05 职场文书
2014年项目工作总结
2014/11/24 职场文书
党员干部廉政承诺书
2015/04/28 职场文书
《我是什么》教学反思
2016/02/16 职场文书
80行代码写一个Webpack插件并发布到npm
2021/05/24 Javascript