基于Python实现粒子滤波效果


Posted in Python onDecember 01, 2020

1、建立仿真模型

(1)假设有一辆小车在一平面运动,起始坐标为[0,0],运动速度为1m/s,加速度为0.1 m / s 2 m/s^2 m/s2,则可以建立如下的状态方程:
Y = A ∗ X + B ∗ U Y=A*X+B*U Y=A∗X+B∗U
U为速度和加速度的的矩阵
U = [ 1 0.1 ] U= \begin{bmatrix} 1 \\ 0.1\\ \end{bmatrix} U=[10.1​]
X为当前时刻的坐标,速度,加速度
X = [ x y y a w V ] X= \begin{bmatrix} x \\ y \\ yaw \\ V \end{bmatrix} X=⎣⎢⎢⎡​xyyawV​⎦⎥⎥⎤​
Y为下一时刻的状态
则观察矩阵A为:
A = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ] A= \begin{bmatrix} 1&0 & 0 &0 \\ 0 & 1 & 0&0 \\ 0 & 0 &1 &0 \\ 0&0 & 0 &0 \end{bmatrix} A=⎣⎢⎢⎡​1000​0100​0010​0000​⎦⎥⎥⎤​
矩阵B则决定小车的运动规矩,这里取B为:
B = [ c o s ( x ) ∗ t 0 s i n ( x ) ∗ t 0 0 t 1 0 ] B= \begin{bmatrix} cos(x)*t &0\\ sin(x)*t &0\\ 0&t\\ 1&0 \end{bmatrix} B=⎣⎢⎢⎡​cos(x)∗tsin(x)∗t01​00t0​⎦⎥⎥⎤​
python编程实现小车的运动轨迹:

"""

Particle Filter localization sample

author: Atsushi Sakai (@Atsushi_twi)

"""

import math

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot


DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range

# Particle filter parameter
NP = 100 # Number of Particle
NTh = NP / 2.0 # Number of particle for re-sampling

def calc_input():
  v = 1.0 # [m/s]
  yaw_rate = 0.1 # [rad/s]
  u = np.array([[v, yaw_rate]]).T
  return u

def motion_model(x, u):
  F = np.array([[1.0, 0, 0, 0],
         [0, 1.0, 0, 0],
         [0, 0, 1.0, 0],
         [0, 0, 0, 0]])

  B = np.array([[DT * math.cos(x[2, 0]), 0],
         [DT * math.sin(x[2, 0]), 0],
         [0.0, DT],
         [1.0, 0.0]])

  x = F.dot(x) + B.dot(u)

  return x

def main():
  print(__file__ + " start!!")

  time = 0.0
  # State Vector [x y yaw v]'
  x_true = np.zeros((4, 1))
  
  x = []
  y = []

  while SIM_TIME >= time:
    time += DT
    u = calc_input()

    x_true = motion_model(x_true, u)
    
    x.append(x_true[0])
    y.append(x_true[1])
    
  plt.plot(x,y, "-b")
    
if __name__ == '__main__':
  main()

运行结果:

基于Python实现粒子滤波效果

2、生成观测数据

实际运用中,我们需要对小车的位置进行定位,假设坐标系上有4个观测点,在小车运动过程中,需要定时将小车距离这4个观测点的位置距离记录下来,这样,当小车下一次寻迹时就有了参考点;

def observation(x_true, xd, u, rf_id):
  x_true = motion_model(x_true, u)

  # add noise to gps x-y
  z = np.zeros((0, 3))

  for i in range(len(rf_id[:, 0])):

    dx = x_true[0, 0] - rf_id[i, 0]
    dy = x_true[1, 0] - rf_id[i, 1]
    d = math.hypot(dx, dy)
    if d <= MAX_RANGE:
      dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
      zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]])
      z = np.vstack((z, zi))

  # add noise to input
  ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
  ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5
  ud = np.array([[ud1, ud2]]).T

  xd = motion_model(xd, ud)

  return x_true, z, xd, ud

3、实现粒子滤波

#
def gauss_likelihood(x, sigma):
  p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
    math.exp(-x ** 2 / (2 * sigma ** 2))

  return p

def pf_localization(px, pw, z, u):
  """
  Localization with Particle filter
  """

  for ip in range(NP):
    x = np.array([px[:, ip]]).T
    w = pw[0, ip]

    # 预测输入
    ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5
    ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5
    ud = np.array([[ud1, ud2]]).T
    x = motion_model(x, ud)

    # 计算权重
    for i in range(len(z[:, 0])):
      dx = x[0, 0] - z[i, 1]
      dy = x[1, 0] - z[i, 2]
      pre_z = math.hypot(dx, dy)
      dz = pre_z - z[i, 0]
      w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0]))

    px[:, ip] = x[:, 0]
    pw[0, ip] = w

  pw = pw / pw.sum() # 归一化

  x_est = px.dot(pw.T)
  p_est = calc_covariance(x_est, px, pw)
  #计算有效粒子数
  N_eff = 1.0 / (pw.dot(pw.T))[0, 0] 
  #重采样
  if N_eff < NTh:
    px, pw = re_sampling(px, pw)
  return x_est, p_est, px, pw


def re_sampling(px, pw):
  """
  low variance re-sampling
  """

  w_cum = np.cumsum(pw)
  base = np.arange(0.0, 1.0, 1 / NP)
  re_sample_id = base + np.random.uniform(0, 1 / NP)
  indexes = []
  ind = 0
  for ip in range(NP):
    while re_sample_id[ip] > w_cum[ind]:
      ind += 1
    indexes.append(ind)

  px = px[:, indexes]
  pw = np.zeros((1, NP)) + 1.0 / NP # init weight

  return px, pw

4、完整源码

该代码来源于https://github.com/AtsushiSakai/PythonRobotics

"""

Particle Filter localization sample

author: Atsushi Sakai (@Atsushi_twi)

"""

import math

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot

# Estimation parameter of PF
Q = np.diag([0.2]) ** 2 # range error
R = np.diag([2.0, np.deg2rad(40.0)]) ** 2 # input error

# Simulation parameter
Q_sim = np.diag([0.2]) ** 2
R_sim = np.diag([1.0, np.deg2rad(30.0)]) ** 2

DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range

# Particle filter parameter
NP = 100 # Number of Particle
NTh = NP / 2.0 # Number of particle for re-sampling

show_animation = True


def calc_input():
  v = 1.0 # [m/s]
  yaw_rate = 0.1 # [rad/s]
  u = np.array([[v, yaw_rate]]).T
  return u


def observation(x_true, xd, u, rf_id):
  x_true = motion_model(x_true, u)

  # add noise to gps x-y
  z = np.zeros((0, 3))

  for i in range(len(rf_id[:, 0])):

    dx = x_true[0, 0] - rf_id[i, 0]
    dy = x_true[1, 0] - rf_id[i, 1]
    d = math.hypot(dx, dy)
    if d <= MAX_RANGE:
      dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
      zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]])
      z = np.vstack((z, zi))

  # add noise to input
  ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
  ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5
  ud = np.array([[ud1, ud2]]).T

  xd = motion_model(xd, ud)

  return x_true, z, xd, ud


def motion_model(x, u):
  F = np.array([[1.0, 0, 0, 0],
         [0, 1.0, 0, 0],
         [0, 0, 1.0, 0],
         [0, 0, 0, 0]])

  B = np.array([[DT * math.cos(x[2, 0]), 0],
         [DT * math.sin(x[2, 0]), 0],
         [0.0, DT],
         [1.0, 0.0]])

  x = F.dot(x) + B.dot(u)

  return x


def gauss_likelihood(x, sigma):
  p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
    math.exp(-x ** 2 / (2 * sigma ** 2))

  return p


def calc_covariance(x_est, px, pw):
  """
  calculate covariance matrix
  see ipynb doc
  """
  cov = np.zeros((3, 3))
  n_particle = px.shape[1]
  for i in range(n_particle):
    dx = (px[:, i:i + 1] - x_est)[0:3]
    cov += pw[0, i] * dx @ dx.T
  cov *= 1.0 / (1.0 - pw @ pw.T)

  return cov


def pf_localization(px, pw, z, u):
  """
  Localization with Particle filter
  """

  for ip in range(NP):
    x = np.array([px[:, ip]]).T
    w = pw[0, ip]

    # Predict with random input sampling
    ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5
    ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5
    ud = np.array([[ud1, ud2]]).T
    x = motion_model(x, ud)

    # Calc Importance Weight
    for i in range(len(z[:, 0])):
      dx = x[0, 0] - z[i, 1]
      dy = x[1, 0] - z[i, 2]
      pre_z = math.hypot(dx, dy)
      dz = pre_z - z[i, 0]
      w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0]))

    px[:, ip] = x[:, 0]
    pw[0, ip] = w

  pw = pw / pw.sum() # normalize

  x_est = px.dot(pw.T)
  p_est = calc_covariance(x_est, px, pw)

  N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number
  if N_eff < NTh:
    px, pw = re_sampling(px, pw)
  return x_est, p_est, px, pw


def re_sampling(px, pw):
  """
  low variance re-sampling
  """

  w_cum = np.cumsum(pw)
  base = np.arange(0.0, 1.0, 1 / NP)
  re_sample_id = base + np.random.uniform(0, 1 / NP)
  indexes = []
  ind = 0
  for ip in range(NP):
    while re_sample_id[ip] > w_cum[ind]:
      ind += 1
    indexes.append(ind)

  px = px[:, indexes]
  pw = np.zeros((1, NP)) + 1.0 / NP # init weight

  return px, pw


def plot_covariance_ellipse(x_est, p_est): # pragma: no cover
  p_xy = p_est[0:2, 0:2]
  eig_val, eig_vec = np.linalg.eig(p_xy)

  if eig_val[0] >= eig_val[1]:
    big_ind = 0
    small_ind = 1
  else:
    big_ind = 1
    small_ind = 0

  t = np.arange(0, 2 * math.pi + 0.1, 0.1)

  # eig_val[big_ind] or eiq_val[small_ind] were occasionally negative
  # numbers extremely close to 0 (~10^-20), catch these cases and set the
  # respective variable to 0
  try:
    a = math.sqrt(eig_val[big_ind])
  except ValueError:
    a = 0

  try:
    b = math.sqrt(eig_val[small_ind])
  except ValueError:
    b = 0

  x = [a * math.cos(it) for it in t]
  y = [b * math.sin(it) for it in t]
  angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind])
  rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2]
  fx = rot.dot(np.array([[x, y]]))
  px = np.array(fx[0, :] + x_est[0, 0]).flatten()
  py = np.array(fx[1, :] + x_est[1, 0]).flatten()
  plt.plot(px, py, "--r")


def main():
  print(__file__ + " start!!")

  time = 0.0

  # RF_ID positions [x, y]
  rf_id = np.array([[10.0, 0.0],
           [10.0, 10.0],
           [0.0, 15.0],
           [-5.0, 20.0]])

  # State Vector [x y yaw v]'
  x_est = np.zeros((4, 1))
  x_true = np.zeros((4, 1))

  px = np.zeros((4, NP)) # Particle store
  pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight
  x_dr = np.zeros((4, 1)) # Dead reckoning

  # history
  h_x_est = x_est
  h_x_true = x_true
  h_x_dr = x_true

  while SIM_TIME >= time:
    time += DT
    u = calc_input()

    x_true, z, x_dr, ud = observation(x_true, x_dr, u, rf_id)

    x_est, PEst, px, pw = pf_localization(px, pw, z, ud)

    # store data history
    h_x_est = np.hstack((h_x_est, x_est))
    h_x_dr = np.hstack((h_x_dr, x_dr))
    h_x_true = np.hstack((h_x_true, x_true))

    if show_animation:
      plt.cla()
      # for stopping simulation with the esc key.
      plt.gcf().canvas.mpl_connect(
        'key_release_event',
        lambda event: [exit(0) if event.key == 'escape' else None])

      for i in range(len(z[:, 0])):
        plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k")
      plt.plot(rf_id[:, 0], rf_id[:, 1], "*k")
      plt.plot(px[0, :], px[1, :], ".r")
      plt.plot(np.array(h_x_true[0, :]).flatten(),
           np.array(h_x_true[1, :]).flatten(), "-b")
      plt.plot(np.array(h_x_dr[0, :]).flatten(),
           np.array(h_x_dr[1, :]).flatten(), "-k")
      plt.plot(np.array(h_x_est[0, :]).flatten(),
           np.array(h_x_est[1, :]).flatten(), "-r")
      plot_covariance_ellipse(x_est, PEst)
      plt.axis("equal")
      plt.grid(True)
      plt.pause(0.001)


if __name__ == '__main__':
  main()

到此这篇关于基于Python实现粒子滤波的文章就介绍到这了,更多相关Python实现粒子滤波内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 查找文件夹下所有文件 实现代码
Jul 01 Python
Python字符串和文件操作常用函数分析
Apr 08 Python
分享Python文本生成二维码实例
Jan 06 Python
Tensorflow实现AlexNet卷积神经网络及运算时间评测
May 24 Python
Python绘制的二项分布概率图示例
Aug 22 Python
一百行python代码将图片转成字符画
Feb 19 Python
Python中如何导入类示例详解
Apr 17 Python
Django模型修改及数据迁移实现解析
Aug 01 Python
Python 类的魔法属性用法实例分析
Nov 21 Python
python实现智能语音天气预报
Dec 02 Python
Python Opencv 通过轨迹(跟踪)栏实现更改整张图像的背景颜色
Mar 09 Python
详解python3 GUI刷屏器(附源码)
Feb 18 Python
Django集成MongoDB实现过程解析
Dec 01 #Python
基于Django快速集成Echarts代码示例
Dec 01 #Python
Python更改pip镜像源的方法示例
Dec 01 #Python
Python读取图像并显示灰度图的实现
Dec 01 #Python
Python性能测试工具Locust安装及使用
Dec 01 #Python
python爬虫中抓取指数的实例讲解
Dec 01 #Python
OpenCV灰度化之后图片为绿色的解决
Dec 01 #Python
You might like
Php中文件下载功能实现超详细流程分析
2012/06/13 PHP
关于初学PHP时的知识积累总结
2013/06/07 PHP
CI(CodeIgniter)框架介绍
2014/06/09 PHP
PHP学习笔记(二):变量详解
2015/04/17 PHP
php使用FFmpeg接口获取视频的播放时长、码率、缩略图以及创建时间
2016/11/07 PHP
javascript 节点排序 2
2011/01/31 Javascript
js编码之encodeURIComponent使用介绍(asp,php)
2012/03/01 Javascript
浅析jQuery中常用的元素查找方法总结
2013/07/04 Javascript
jquery中focus()函数实现当对象获得焦点后自动把光标移到内容最后
2013/09/29 Javascript
js 立即调用的函数表达式如何写
2014/01/12 Javascript
jQuery实现在textarea指定位置插入字符或表情的方法
2015/03/11 Javascript
JS实现点击上移下移LI行数据的方法
2015/08/05 Javascript
Javascript 实现微信分享(QQ、朋友圈、分享给朋友)
2016/10/21 Javascript
jQuery利用FormData上传文件实现批量上传
2018/12/04 jQuery
Vue中错误图片的处理的实现代码
2019/11/07 Javascript
js实现一款简单踩白块小游戏(曾经很火)
2019/12/02 Javascript
jQuery使用ajax传递json对象到服务端及contentType的用法示例
2020/03/12 jQuery
微信h5静默和非静默授权获取用户openId的方法和步骤
2020/06/08 Javascript
[00:12]2018DOTA2亚洲邀请赛SOLO赛 MidOne是否中单第一人?
2018/04/05 DOTA
跟老齐学Python之深入变量和引用对象
2014/09/24 Python
python 读取摄像头数据并保存的实例
2018/08/03 Python
Python 实现某个功能每隔一段时间被执行一次的功能方法
2018/10/14 Python
使用GitHub和Python实现持续部署的方法
2019/05/09 Python
用Python爬取QQ音乐评论并制成词云图的实例
2019/08/24 Python
Python爬虫实现“盗取”微信好友信息的方法分析
2019/09/16 Python
Python是什么 Python的用处
2020/05/26 Python
市场营销专业个人自荐信格式
2013/09/21 职场文书
十岁生日家长答谢词
2014/01/17 职场文书
彩色的非洲教学反思
2014/02/18 职场文书
销售顾问岗位职责
2014/02/25 职场文书
2014年公司庆元旦活动方案
2014/03/05 职场文书
2014世界杯球队球队口号
2014/06/05 职场文书
销售顾问工作计划书
2014/09/15 职场文书
2014年安全生产工作总结
2014/11/13 职场文书
2015年教育实习工作总结
2015/04/24 职场文书
校园歌手大赛主持词
2015/07/03 职场文书