使用 prometheus python 库编写自定义指标的方法(完整代码)


Posted in Python onJune 29, 2020

虽然 prometheus 已有大量可直接使用的 exporter 可供使用,以满足收集不同的监控指标的需要。例如,node exporter 可以收集机器 cpu,内存等指标,cadvisor 可以收集容器指标。然而,如果需要收集一些定制化的指标,还是需要我们编写自定义的指标。

本文讲述如何使用 prometheus python 客户端库和 flask 编写 prometheus 自定义指标。

安装依赖库

我们的程序依赖于flask 和prometheus client 两个库,其 requirements.txt 内容如下:

flask==1.1.2
prometheus-client==0.8.0

运行 flask

我们先使用 flask web 框架将 /metrics 接口运行起来,再往里面添加指标的实现逻辑。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from flask import Flask
app = Flask(__name__)

@app.route('/metrics')
def hello():
 return 'metrics'

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

打开浏览器,输入 http://127.0.0.1:5000/metrics,按下回车后浏览器显示 metrics 字符。

编写指标

Prometheus 提供四种指标类型,分别为 Counter,Gauge,Histogram 和 Summary。

Counter

Counter 指标只增不减,可以用来代表处理的请求数量,处理的任务数量,等。

可以使用 Counter 定义一个 counter 指标:

counter = Counter('my_counter', 'an example showed how to use counter')

其中,my_counter 是 counter 的名称,an example showed how to use counter 是对该 counter 的描述。

使用 counter 完整的代码如下:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from flask import Flask, Response
from prometheus_client import Counter, generate_latest
app = Flask(__name__)
counter = Counter('my_counter', 'an example showed how to use counter')

@app.route('/metrics')
def hello():
 counter.inc(1)
 return Response(generate_latest(counter), mimetype='text/plain')

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

访问 http://127.0.0.1:5000/metrics,浏览器输出:

# HELP my_counter_total an example showed how to use counter
# TYPE my_counter_total counter
my_counter_total 6.0
# HELP my_counter_created an example showed how to use counter
# TYPE my_counter_created gauge
my_counter_created 1.5932468510424378e+09

在定义 counter 指标时,可以定义其 label 标签:

counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'])

在使用时指定标签的值:

counter.labels('127.0.0.1').inc(1)

这时浏览器会将标签输出:

my_counter_total{machine_ip="127.0.0.1"} 1.0

Gauge

Gauge 指标可增可减,例如,并发请求数量,cpu 占用率,等。

可以使用 Gauge 定义一个 gauge 指标:

registry = CollectorRegistry()
gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)

为使得 /metrics 接口返回多个指标,我们引入了 CollectorRegistry ,并设置 gauge 的 registry 属性。

使用 set 方法设置 gauge 指标的值:

gauge.labels('127.0.0.1').set(2)

访问 http://127.0.0.1:5000/metrics,浏览器增加输出:

# HELP my_gauge an example showed how to use gauge
# TYPE my_gauge gauge
my_gauge{machine_ip="127.0.0.1"} 2.0

Histogram

Histogram 用于统计样本数值落在不同的桶(buckets)里面的数量。例如,统计应用程序的响应时间,可以使用 histogram 指标类型。

使用 Histogram 定义一个 historgram 指标:

buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))
histogram = Histogram('my_histogram', 'an example showed how to use histogram', ['machine_ip'], registry=registry, buckets=buckets)

如果我们不使用默认的 buckets,可以指定一个自定义的 buckets,如上面的代码所示。

使用 observe() 方法设置 histogram 的值:

histogram.labels('127.0.0.1').observe(1001)

访问 /metrics 接口,输出:

# HELP my_histogram an example showed how to use histogram
# TYPE my_histogram histogram
my_histogram_bucket{le="100.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="200.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="300.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="500.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="1000.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="3000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="10000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="+Inf",machine_ip="127.0.0.1"} 1.0
my_histogram_count{machine_ip="127.0.0.1"} 1.0
my_histogram_sum{machine_ip="127.0.0.1"} 1001.0
# HELP my_histogram_created an example showed how to use histogram
# TYPE my_histogram_created gauge
my_histogram_created{machine_ip="127.0.0.1"} 1.593260699767071e+09

由于我们设置了 histogram 的样本值为 1001,可以看到,从 3000 开始,xxx_bucket 的值为 1。由于只设置一个样本值,故 my_histogram_count 为 1 ,且样本总数 my_histogram_sum 为 1001。
读者可以自行试验几次,慢慢体会 histogram 指标的使用,远比看网上的文章理解得快。

Summary

Summary 和 histogram 类型类似,可用于统计数据的分布情况。

定义 summary 指标:

summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)

设置 summary 指标的值:

summary.labels('127.0.0.1').observe(randint(1, 10))

访问 /metrics 接口,输出:

# HELP my_summary an example showed how to use summary
# TYPE my_summary summary
my_summary_count{machine_ip="127.0.0.1"} 4.0
my_summary_sum{machine_ip="127.0.0.1"} 16.0
# HELP my_summary_created an example showed how to use summary
# TYPE my_summary_created gauge
my_summary_created{machine_ip="127.0.0.1"} 1.593263241728389e+09

附:完整源代码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from random import randint
from flask import Flask, Response
from prometheus_client import Counter, Gauge, Histogram, Summary, \
 generate_latest, CollectorRegistry
app = Flask(__name__)
registry = CollectorRegistry()
counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'], registry=registry)
gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)
buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))
histogram = Histogram('my_histogram', 'an example showed how to use histogram',
  ['machine_ip'], registry=registry, buckets=buckets)
summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)

@app.route('/metrics')
def hello():
 counter.labels('127.0.0.1').inc(1)
 gauge.labels('127.0.0.1').set(2)
 histogram.labels('127.0.0.1').observe(1001)
 summary.labels('127.0.0.1').observe(randint(1, 10))
 return Response(generate_latest(registry), mimetype='text/plain')

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

参考资料

https://github.com/prometheus/client_python
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://pypi.org/project/prometheus-client/
https://prometheus.io/docs/concepts/metric_types/
http://www.coderdocument.com/docs/prometheus/v2.14/best_practices/histogram_and_summary.html
https://prometheus.io/docs/practices/histograms/

总结

到此这篇关于使用 prometheus python 库编写自定义指标的文章就介绍到这了,更多相关prometheus python 库编写自定义指标内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现的简单文本类游戏实例
Apr 28 Python
Python中urllib+urllib2+cookielib模块编写爬虫实战
Jan 20 Python
Python 实现简单的shell sed替换功能(实例讲解)
Sep 29 Python
pandas进行数据的交集与并集方式的数据合并方法
Jun 27 Python
Python使用post及get方式提交数据的实例
Jan 24 Python
pycharm访问mysql数据库的方法步骤
Jun 18 Python
PyQt5实现QLineEdit添加clicked信号的方法
Jun 25 Python
Python求两点之间的直线距离(2种实现方法)
Jul 07 Python
用Python徒手撸一个股票回测框架搭建【推荐】
Aug 05 Python
Python如何脚本过滤文件中的注释
May 27 Python
PyTorch-GPU加速实例
Jun 23 Python
Python中的min及返回最小值索引的操作
May 10 Python
使用keras时input_shape的维度表示问题说明
Jun 29 #Python
在Keras中CNN联合LSTM进行分类实例
Jun 29 #Python
使用keras实现BiLSTM+CNN+CRF文字标记NER
Jun 29 #Python
Python建造者模式案例运行原理解析
Jun 29 #Python
解决Keras中循环使用K.ctc_decode内存不释放的问题
Jun 29 #Python
Python根据指定文件生成XML的方法
Jun 29 #Python
keras在构建LSTM模型时对变长序列的处理操作
Jun 29 #Python
You might like
CodeIgniter启用缓存和清除缓存的方法
2014/06/12 PHP
php中异常处理方法小结
2015/01/09 PHP
Yii框架上传图片用法总结
2016/03/28 PHP
jQuery对象和DOM对象的相互转化实现代码
2010/03/02 Javascript
jQuery 获取对象 定位子对象
2010/05/31 Javascript
javascript级联下拉列表实例代码(自写)
2013/05/10 Javascript
Javascript中的String对象详谈
2014/03/03 Javascript
javascript面向对象特性代码实例
2014/06/12 Javascript
JavaScript为事件句柄绑定监听函数实例详解
2015/12/15 Javascript
Bootstrap常用组件学习(整理)
2017/03/24 Javascript
微信小程序开发之toast提示插件使用示例
2017/06/08 Javascript
微信小程序上传图片实例
2018/05/28 Javascript
如何使用less实现随机下雪动画详解
2019/01/02 Javascript
彻底揭秘keep-alive原理(小结)
2019/05/05 Javascript
vue 中 命名视图的用法实例详解
2019/08/14 Javascript
详解element-ui表格中勾选checkbox,高亮当前行
2019/09/02 Javascript
js tab栏切换代码实例解析
2019/09/03 Javascript
基于javascript实现贪吃蛇小游戏
2019/11/25 Javascript
Node.js API详解之 net模块实例分析
2020/05/18 Javascript
Python3基础之基本数据类型概述
2014/08/13 Python
Python socket.error: [Errno 98] Address already in use的原因和解决方法
2014/08/25 Python
Python中的装饰器用法详解
2015/01/14 Python
python数据清洗系列之字符串处理详解
2017/02/12 Python
PyQt5每天必学之QSplitter实现窗口分隔
2018/04/19 Python
在PyCharm中遇到pip安装 失败问题及解决方案(pip失效时的解决方案)
2020/03/10 Python
python 获取计算机的网卡信息
2021/02/18 Python
描述RIP和OSPF区别以及特点
2015/01/17 面试题
英语教师岗位职责
2014/03/16 职场文书
同意迁入证明模板
2014/10/26 职场文书
二审答辩状格式
2015/05/22 职场文书
赢在执行观后感
2015/06/16 职场文书
《分数乘法》教学反思
2016/02/24 职场文书
python urllib库的使用详解
2021/04/13 Python
Python 数据结构之十大经典排序算法一文通关
2021/10/16 Python
python绘制简单直方图(质量分布图)的方法
2022/04/21 Python
使用CSS实现六边形的图片效果
2022/08/05 HTML / CSS