使用 prometheus python 库编写自定义指标的方法(完整代码)


Posted in Python onJune 29, 2020

虽然 prometheus 已有大量可直接使用的 exporter 可供使用,以满足收集不同的监控指标的需要。例如,node exporter 可以收集机器 cpu,内存等指标,cadvisor 可以收集容器指标。然而,如果需要收集一些定制化的指标,还是需要我们编写自定义的指标。

本文讲述如何使用 prometheus python 客户端库和 flask 编写 prometheus 自定义指标。

安装依赖库

我们的程序依赖于flask 和prometheus client 两个库,其 requirements.txt 内容如下:

flask==1.1.2
prometheus-client==0.8.0

运行 flask

我们先使用 flask web 框架将 /metrics 接口运行起来,再往里面添加指标的实现逻辑。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from flask import Flask
app = Flask(__name__)

@app.route('/metrics')
def hello():
 return 'metrics'

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

打开浏览器,输入 http://127.0.0.1:5000/metrics,按下回车后浏览器显示 metrics 字符。

编写指标

Prometheus 提供四种指标类型,分别为 Counter,Gauge,Histogram 和 Summary。

Counter

Counter 指标只增不减,可以用来代表处理的请求数量,处理的任务数量,等。

可以使用 Counter 定义一个 counter 指标:

counter = Counter('my_counter', 'an example showed how to use counter')

其中,my_counter 是 counter 的名称,an example showed how to use counter 是对该 counter 的描述。

使用 counter 完整的代码如下:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from flask import Flask, Response
from prometheus_client import Counter, generate_latest
app = Flask(__name__)
counter = Counter('my_counter', 'an example showed how to use counter')

@app.route('/metrics')
def hello():
 counter.inc(1)
 return Response(generate_latest(counter), mimetype='text/plain')

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

访问 http://127.0.0.1:5000/metrics,浏览器输出:

# HELP my_counter_total an example showed how to use counter
# TYPE my_counter_total counter
my_counter_total 6.0
# HELP my_counter_created an example showed how to use counter
# TYPE my_counter_created gauge
my_counter_created 1.5932468510424378e+09

在定义 counter 指标时,可以定义其 label 标签:

counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'])

在使用时指定标签的值:

counter.labels('127.0.0.1').inc(1)

这时浏览器会将标签输出:

my_counter_total{machine_ip="127.0.0.1"} 1.0

Gauge

Gauge 指标可增可减,例如,并发请求数量,cpu 占用率,等。

可以使用 Gauge 定义一个 gauge 指标:

registry = CollectorRegistry()
gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)

为使得 /metrics 接口返回多个指标,我们引入了 CollectorRegistry ,并设置 gauge 的 registry 属性。

使用 set 方法设置 gauge 指标的值:

gauge.labels('127.0.0.1').set(2)

访问 http://127.0.0.1:5000/metrics,浏览器增加输出:

# HELP my_gauge an example showed how to use gauge
# TYPE my_gauge gauge
my_gauge{machine_ip="127.0.0.1"} 2.0

Histogram

Histogram 用于统计样本数值落在不同的桶(buckets)里面的数量。例如,统计应用程序的响应时间,可以使用 histogram 指标类型。

使用 Histogram 定义一个 historgram 指标:

buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))
histogram = Histogram('my_histogram', 'an example showed how to use histogram', ['machine_ip'], registry=registry, buckets=buckets)

如果我们不使用默认的 buckets,可以指定一个自定义的 buckets,如上面的代码所示。

使用 observe() 方法设置 histogram 的值:

histogram.labels('127.0.0.1').observe(1001)

访问 /metrics 接口,输出:

# HELP my_histogram an example showed how to use histogram
# TYPE my_histogram histogram
my_histogram_bucket{le="100.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="200.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="300.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="500.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="1000.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="3000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="10000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="+Inf",machine_ip="127.0.0.1"} 1.0
my_histogram_count{machine_ip="127.0.0.1"} 1.0
my_histogram_sum{machine_ip="127.0.0.1"} 1001.0
# HELP my_histogram_created an example showed how to use histogram
# TYPE my_histogram_created gauge
my_histogram_created{machine_ip="127.0.0.1"} 1.593260699767071e+09

由于我们设置了 histogram 的样本值为 1001,可以看到,从 3000 开始,xxx_bucket 的值为 1。由于只设置一个样本值,故 my_histogram_count 为 1 ,且样本总数 my_histogram_sum 为 1001。
读者可以自行试验几次,慢慢体会 histogram 指标的使用,远比看网上的文章理解得快。

Summary

Summary 和 histogram 类型类似,可用于统计数据的分布情况。

定义 summary 指标:

summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)

设置 summary 指标的值:

summary.labels('127.0.0.1').observe(randint(1, 10))

访问 /metrics 接口,输出:

# HELP my_summary an example showed how to use summary
# TYPE my_summary summary
my_summary_count{machine_ip="127.0.0.1"} 4.0
my_summary_sum{machine_ip="127.0.0.1"} 16.0
# HELP my_summary_created an example showed how to use summary
# TYPE my_summary_created gauge
my_summary_created{machine_ip="127.0.0.1"} 1.593263241728389e+09

附:完整源代码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from random import randint
from flask import Flask, Response
from prometheus_client import Counter, Gauge, Histogram, Summary, \
 generate_latest, CollectorRegistry
app = Flask(__name__)
registry = CollectorRegistry()
counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'], registry=registry)
gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)
buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))
histogram = Histogram('my_histogram', 'an example showed how to use histogram',
  ['machine_ip'], registry=registry, buckets=buckets)
summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)

@app.route('/metrics')
def hello():
 counter.labels('127.0.0.1').inc(1)
 gauge.labels('127.0.0.1').set(2)
 histogram.labels('127.0.0.1').observe(1001)
 summary.labels('127.0.0.1').observe(randint(1, 10))
 return Response(generate_latest(registry), mimetype='text/plain')

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

参考资料

https://github.com/prometheus/client_python
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://pypi.org/project/prometheus-client/
https://prometheus.io/docs/concepts/metric_types/
http://www.coderdocument.com/docs/prometheus/v2.14/best_practices/histogram_and_summary.html
https://prometheus.io/docs/practices/histograms/

总结

到此这篇关于使用 prometheus python 库编写自定义指标的文章就介绍到这了,更多相关prometheus python 库编写自定义指标内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python的GUI框架PySide的安装配置教程
Feb 16 Python
Python基于二分查找实现求整数平方根的方法
May 12 Python
Python打包可执行文件的方法详解
Sep 19 Python
Python列表切片用法示例
Apr 19 Python
Python优先队列实现方法示例
Sep 21 Python
python scipy卷积运算的实现方法
Sep 16 Python
python、Matlab求定积分的实现
Nov 20 Python
Python 支持向量机分类器的实现
Jan 15 Python
在pycharm中关掉ipython console/PyDev操作
Jun 09 Python
Python操作Elasticsearch处理timeout超时
Jul 17 Python
Python使用pyenv实现多环境管理
Feb 05 Python
教你怎么用PyCharm为同一服务器配置多个python解释器
May 31 Python
使用keras时input_shape的维度表示问题说明
Jun 29 #Python
在Keras中CNN联合LSTM进行分类实例
Jun 29 #Python
使用keras实现BiLSTM+CNN+CRF文字标记NER
Jun 29 #Python
Python建造者模式案例运行原理解析
Jun 29 #Python
解决Keras中循环使用K.ctc_decode内存不释放的问题
Jun 29 #Python
Python根据指定文件生成XML的方法
Jun 29 #Python
keras在构建LSTM模型时对变长序列的处理操作
Jun 29 #Python
You might like
php使用Smarty的相关注意事项及访问变量的几种方式
2011/12/08 PHP
8个必备的PHP功能开发
2015/10/02 PHP
Yii遍历行下每列数据的方法
2016/10/17 PHP
jQuery .tmpl(), .template()学习资料小结
2011/07/18 Javascript
js修改table中Td的值(定义td的双击事件)
2013/01/10 Javascript
js 有框架页面跳转(target)三种情况下的应用
2013/04/09 Javascript
js页面跳转的问题(跳转到父页面、最外层页面、本页面)
2013/08/14 Javascript
原生js和jQuery写的网页选项卡特效对比
2015/04/27 Javascript
JavaScript更改字符串的大小写
2015/05/07 Javascript
jQuery实现鼠标经过图片变亮其他变暗效果
2015/05/08 Javascript
jquery中cookie用法实例详解(获取,存储,删除等)
2016/01/04 Javascript
解析Node.js基于模块和包的代码部署方式
2016/02/16 Javascript
jQuery实现放大镜效果实例代码
2016/03/17 Javascript
React项目动态设置title标题的方法示例
2018/09/26 Javascript
jQuery实现的点击显示隐藏下拉菜单功能完整示例
2019/05/17 jQuery
js实现左右轮播图
2020/01/09 Javascript
使用Vant完成Dialog弹框案例
2020/11/11 Javascript
[03:36]2014DOTA2 TI小组赛综述 八强诞生进军钥匙球馆
2014/07/15 DOTA
python正则分析nginx的访问日志
2017/01/17 Python
Python基于贪心算法解决背包问题示例
2017/11/27 Python
python爬虫爬取淘宝商品信息(selenum+phontomjs)
2018/02/24 Python
pip命令无法使用的解决方法
2018/06/12 Python
pycharm debug功能实现跳到循环末尾的方法
2018/11/29 Python
python3+PyQt5 创建多线程网络应用-TCP客户端和TCP服务器实例
2019/06/17 Python
python 批量解压压缩文件的实例代码
2019/06/27 Python
使用Python+selenium实现第一个自动化测试脚本
2020/03/17 Python
Python使用socketServer包搭建简易服务器过程详解
2020/06/12 Python
html5视频播放_动力节点Java学院整理
2017/07/13 HTML / CSS
美国二手复古奢侈品包包购物网站:LXRandCo
2019/06/18 全球购物
拖鞋店创业计划书
2014/01/15 职场文书
一年级学生评语
2014/04/23 职场文书
学生会竞选演讲稿学习部
2014/08/25 职场文书
个人查摆剖析材料
2014/10/16 职场文书
优秀员工自荐书
2015/03/06 职场文书
开场白怎么写
2015/06/01 职场文书
《百分数的认识》教学反思
2016/02/19 职场文书