深入浅出的讲解:信号调制到底是如何实现的


Posted in 无线电 onFebruary 18, 2022

要理解如何进行无线数据传输,我们需要了解:

  1. 什么是频率?

  2. 信息 / 数据信号

  3. 时间表示

  4. 频率表示,为什么它很重要?

  5. 滤波器如何工作?

  6. FCC 通信频段

  7. 调制和解调

这些主题可能您在大学专业课上学过(您也可以在维基百科中查询),其中涉及非常庞大的知识。此前我为高级项目组中非电子工程专业的学生准备的PPT中,配套介绍了这些主题――学生们期望能够弄清楚我们谈到的“900MHz”、“2.4GHz”或“跳频”等术语。本文限于篇幅,难以对这些主题的阐述完整、彻底,忽略了专业课所涉及的很多细节,仅提供无线传输方面的概念性说明。

什么是频率?

频率是描述每隔多长时间振荡一次或重复一次的术语,单位为赫兹(Hz)或秒的倒数。如果每秒振荡60次,则其频率为60Hz。在本文中,我们将主要探讨音频波(气压的振荡),及其如何以数百千赫频率从无线电台传播到您的车载收音机上(或任何AM无线电台)。任何波都有一个频率,光波也一样。光波和其他更高频率的波(例如X射线、伽马射线、微波)一般用波长来表示,而不用频率。例如,绿色光的波长大约为400纳米。下图显示了行进波单位间的关系:

深入浅出的讲解:信号调制到底是如何实现的

正弦波的基本单位。

假设信号速度恒定,则波长和频率是可以换算的,不过这已超出本文的讨论范畴。

不同复杂性的信息信号

如果发送一个纯正弦波信号(称为“音频”)。它不携载任何实际信息,听上去也并不好听。下图是一个正弦波的图像,X轴为时间,Y轴为电压,这是一个150Hz参考信号。

深入浅出的讲解:信号调制到底是如何实现的

单音频信号(时域)

那么为什么要看这幅图像呢?让我们来看一下时域中复杂性不断增加的信号。这是一个双音频信号(两个音频叠加在一起)。此正弦波与上一个正弦波相同,只不过又加上了另一个倍频(300Hz)的正弦波。

深入浅出的讲解:信号调制到底是如何实现的

双音频信号(时域)

那么由多个不同频率的信号是什么样的呢?

深入浅出的讲解:信号调制到底是如何实现的

多音频信号(时域)

它变得毛刺更多。您能在此图中看到的唯一真实信息便是在指定时间内的电压电平。这就是信息的本质,它极其重要——但也使分析变得复杂,更使了解调制工作变得更加困难。为此,您可能希望用另一种不同的方式(频域)绘制信号图像。它显示信号在一系列频率上的强度。让我们看一下。

为何信号的频谱很重要?

要将大量信号转换到频域中,需要进行精密的数学运算。这项工作很困难,计算量很大,必须反复练习才能掌握。我甚至定期对那些重要信号的进行卷积运算,练习我的转换能力。不管怎样,让我们看一下以上三个信号如何用这种形式来表示(这里忽略中间的推演运算)。我们不再绘制信号电压随时间的变化,而是绘制信号功率随频率的变化。

深入浅出的讲解:信号调制到底是如何实现的

单音频信号(频域)

深入浅出的讲解:信号调制到底是如何实现的

双音频信号(频域)

深入浅出的讲解:信号调制到底是如何实现的

多音频信号(频域)

注意到图中明显的尖峰了吗?那是正弦波在特定频率(X轴)上的数学表示。理想情况下,这些尖峰应当是无限窄(宽度)和无限高的,但是受我所使用的Spice软件的技术水平限制,它是不完美的。这种信号称为脉冲信号。有关此信号的详细说明,请阅读此处!对于这个音频,我们看到在频域看到一个尖峰,在150Hz处。而双音频信号在频域有两个尖峰,在150Hz和300Hz处。多音频信号在时域中基本无法解读,时域信号中众多的小尖峰,是多个频率点的叠加组成的。

最后举一个例子,一个实际的音频信号。如下图,我采样了15秒歌手Cream的歌曲《白色的房间(WhiteRoom)》。不必为信号长的摸样担心,在EricClapton的吉他独奏期间,任何麦克风都没有损坏。

深入浅出的讲解:信号调制到底是如何实现的

音频信号

这就是大多数信号的看上去的样子,尤其是模拟信号。人和乐器的声音并不是在离散的频率上播放,其频率内容分布在整个频率范围内(尽管某些内容几乎是听不到的)。这个范围在3Hz至20kHz之间,大约就是人耳能够听到的频率范围。低音部的频率较低,高音部的频率较高。Y轴标度用dB表示,dB表示一个比例,没有单位。在本质上来说,dB值越高,那个频率对应的信号就越高。

理论上,我们可以用无数个音频信号累加之和来表示这个模拟信号。

滤波器

幸好频域的图形表示可为滤波器设计提供一些帮助。滤波器有四种类型,包括:

  • 低通滤波器:高于“截止频率”的所有频率都被滤除。

  • 高通滤波器:低于“截止频率”的所有频率都被滤除。

  • 带通滤波器:距离“中心频率”一定范围外的所有频率都被滤除。

  • 带阻滤波器:距离“中心频率”一定范围内的所有频率都被滤除。

深入浅出的讲解:信号调制到底是如何实现的

由上而下:带通滤波器、低通滤波器、高通滤波器

“3dB”点是信号输出降低大约30%的地方。dB是一个对数标度:

x[dB]=10*log(x[linear])

x[linear]=10^(x[dB]/10)

基于这个公式,x[linear]=0.7,对应的x[dB]大约为-3.0dB,0.7就是70%,就是信号衰减30%,这时对应的频率就称为滤波器的截止频率。汽车音响就是一个实际的例子,它可能包括一个“分频器”,其特殊的滤波器设计可将低频切换至低音扬声器、高频切换至高音扬声器。这对于无线接收机是非常重要的。

FCC通信频段

FCC和其他国际组织一致认为,如果任由任何人随意使用任何频率,那么必然会导致绝对的混乱。因此,应为不同用户分配不同的频率范围。例如分别为FM无线电、AM无线电、WiFi、移动电话、海事通信、空中交通管制、业余无线电、对讲机、军事通信、警用电台等应用分配不同频段。对了,我们还没提卫星或空间通信!这真是太乱了,幸亏有FCC帮助管理。如果您感到好奇,不妨用谷歌搜索一下,马上就能找到一个更详细的图表。

深入浅出的讲解:信号调制到底是如何实现的

FCC频谱分配表

FCC已为小范围的个人应用、业余爱好者的应用和其他常规“ISM频段”应用(工业、科学、医疗)预留了部分频段。这就是WiFi、对讲机、无线传感器和其他通信设备的工作频段。让我们再次讨论一下频率!人耳的听力范围为20Hz至20kHz。如果我们的AM电台为680kHz,那么无线电塔如何将声音变到该频率呢?它如何避免干扰到其他电台?接收机如何将信号频率转换回可听范围?

调制

让我们离开频域,回到时域。再次重申一下:我们的讨论过于简单,略过了很多细节!在此只是为了得到一个概念性的结果。之所以这么说是因为,数学表示最适合在时域中使用,而图形表示在频域中效果最佳。

调制的作用就是将信号从低频(信息)转换到高频(载波)。思路很简单:用您的信息乘以高频载波,例如680kHz,这就是AM广播!稍等一下,事情果真如此简单吗?让我们看几个数学关系式。在此例中,θ就是信息(可听内容),φ是载波(例如,AM广播频率)。

深入浅出的讲解:信号调制到底是如何实现的

图中文字中英对照

深入浅出的讲解:信号调制到底是如何实现的

我们的AM信号如果用公式来表达,涉及多个信号的乘法运算,这在时域或频域中是很难想像的,因为我们仅仅看到音频是什么样的。但是上述这种对应关系告诉我们:两个信号相乘可用两个信号相加来表示!现在,我们很容易在频域中绘制出经乘法运算得到的信号。

深入浅出的讲解:信号调制到底是如何实现的

在载波(1000Hz)上调制的单音频(150Hz)

在此图中,我们用150Hz音频乘以1000Hz载波。上表显示了两个半功率信号,分别位于1000-150和1000+150Hz处,也就是在850Hz和1150Hz处。那么当经过调制后,我们每个音节的表现如何呢?

深入浅出的讲解:信号调制到底是如何实现的

声音调制到700kHz

不出所料,我们看到了两个信号。一个是载波+信息,另一个是载波-信息(甚至注意到它是如何反转的)。

这就是AM频谱和信号内容的大致图解。

深入浅出的讲解:信号调制到底是如何实现的

解调

现在我们来讨论接收机。所有信号均从天线开始,在同一时间查看所有信号,看到的是一团乱麻。天线拾取到大量的数据,但它并不负责进行分类,这是调谐器和其他硬件的工作。信号解调的原理与调制原理完全相同,非常方便!要将我们的音频信号转回到“基带”,并将其发送至扬声器,我们可以再次用载波乘以所有信号。

深入浅出的讲解:信号调制到底是如何实现的

这个公式中包含一大串数学函数、括号和频率变量。不过它是对的,我们由此导出了四个信号:

1/4功率信号,(2*载波+信息)

1/4功率信号,(信息)

1/4功率信号,(2*载波-信息)

1/4功率信号,(-信息)

让我们忽略这个包含负频率的项,它是我们讨论调制及涉及的运算时,常常会出现的数学产物。在双倍载波上的两个信号(假设载波远大于信息,它们几乎是相同的)可用低通滤波器滤出。低通滤波器会阻断信号的所有高频内容,于是只将原始信息留给我们。我们可用放大器放大原始信息,然后发送到扬声器。太酷了!这就是它的图像,但是要向后延迟一点。

结论

本文的目的是高度概括地介绍无线电信号是如何传输和调制的。通过将多个音频(或基带)信号乘以不同的高频信号(载波),我们可以通过同一个信道成功传输多个数据流而不会相互干扰。再次用载波相乘,将调制的信号转换回基带,再用低通滤波器和放大器清理并放大信号,即可让我们听到各种美妙动听的声音!

无线电 相关文章推荐
全国FM电台频率大全 - 13 福建省
Mar 11 无线电
全国中波电台频率表
Mar 11 无线电
什么是短波收听SWL
Mar 01 无线电
上海无线电三厂简史修改版
Mar 01 无线电
中国广播史趣谈 — 几个历史第一次
Mar 01 无线电
MOTOROLA 摩托罗拉 MODEL 66-XI五灯中波收音机
Mar 02 无线电
DIY实用性框形天线
Mar 02 无线电
SONY ICF-F10中波修复记
Mar 02 无线电
24年收藏2000多部退役军用电台
Feb 18 无线电
根德5570型九灯四波段立体声收音机是电子管收音机的楷模 ? 再论5570
Apr 05 无线电
ICOM R71E和R72E图文对比解说
Apr 07 无线电
索尼ICF-5900W收音机测评
Apr 24 无线电
对讲机的最大通讯距离是多少
业余无线电通联Q语
Feb 18 #无线电
船舶调度指挥系统——助力智慧海事
24年收藏2000多部退役军用电台
Feb 18 #无线电
高性能跳频抗干扰宽带自组网电台
警用民用对讲机找不同
Feb 18 #无线电
工厂无线对讲系统解决方案
You might like
php将字符串全部转换成大写或者小写的方法
2015/03/17 PHP
PHP面向对象程序设计之命名空间与自动加载类详解
2016/12/02 PHP
php显示页码分页类的封装
2017/06/08 PHP
javascript中callee与caller的用法和应用场景
2010/12/08 Javascript
jquery实现marquee效果(文字或者图片的水平垂直滚动)
2013/01/07 Javascript
tangram框架响应式加载图片方法
2013/11/21 Javascript
实例详解JSON数据格式及json格式数据域字符串相互转换
2016/01/07 Javascript
jQuery选择器总结之常用元素查找方法
2016/08/04 Javascript
微信公众号支付H5调用支付解析
2016/11/04 Javascript
整理一些最近经常遇到的前端面试题
2017/04/25 Javascript
SpringMVC+bootstrap table实例详解
2017/06/02 Javascript
解决iView中时间控件选择的时间总是少一天的问题
2018/03/15 Javascript
Angular入口组件(entry component)与声明式组件的区别详解
2018/04/09 Javascript
vue.js父子组件通信动态绑定的实例
2018/09/28 Javascript
解决vue 界面在苹果手机上滑动点击事件等卡顿问题
2018/11/27 Javascript
Vue实现类似Spring官网图片滑动效果方法
2019/03/01 Javascript
javascript实现简易聊天室
2019/07/12 Javascript
jquery中attr、prop、data区别与用法分析
2019/09/25 jQuery
关于Node.js中频繁修改代码重启服务器的问题
2020/10/15 Javascript
详解python的ORM中Pony用法
2018/02/09 Python
Python求两个圆的交点坐标或三个圆的交点坐标方法
2018/11/07 Python
Keras中的两种模型:Sequential和Model用法
2020/06/27 Python
Python加速程序运行的方法
2020/07/29 Python
python调用摄像头的示例代码
2020/09/28 Python
你不知道的葡萄干处理法、橙蜜处理法、二氧化碳酵母法
2021/03/17 冲泡冲煮
CSS3动画:5种预载动画效果实例
2017/04/05 HTML / CSS
英国景点门票网站:attractiontix
2019/08/27 全球购物
物业公司采购员岗位职责
2013/12/31 职场文书
职业生涯规划设计步骤
2014/01/12 职场文书
大学军训感言600字
2014/02/25 职场文书
党员教师一句话承诺
2014/05/30 职场文书
党员违纪检讨书怎么写
2014/11/01 职场文书
夫妻分居协议书范本
2014/11/28 职场文书
SQL Server中交叉联接的用法详解
2021/04/22 SQL Server
如何理解python接口自动化之logging日志模块
2021/06/15 Python
Ajax实现异步加载数据
2021/11/17 Javascript