深入浅出的讲解:信号调制到底是如何实现的


Posted in 无线电 onFebruary 18, 2022

要理解如何进行无线数据传输,我们需要了解:

  1. 什么是频率?

  2. 信息 / 数据信号

  3. 时间表示

  4. 频率表示,为什么它很重要?

  5. 滤波器如何工作?

  6. FCC 通信频段

  7. 调制和解调

这些主题可能您在大学专业课上学过(您也可以在维基百科中查询),其中涉及非常庞大的知识。此前我为高级项目组中非电子工程专业的学生准备的PPT中,配套介绍了这些主题――学生们期望能够弄清楚我们谈到的“900MHz”、“2.4GHz”或“跳频”等术语。本文限于篇幅,难以对这些主题的阐述完整、彻底,忽略了专业课所涉及的很多细节,仅提供无线传输方面的概念性说明。

什么是频率?

频率是描述每隔多长时间振荡一次或重复一次的术语,单位为赫兹(Hz)或秒的倒数。如果每秒振荡60次,则其频率为60Hz。在本文中,我们将主要探讨音频波(气压的振荡),及其如何以数百千赫频率从无线电台传播到您的车载收音机上(或任何AM无线电台)。任何波都有一个频率,光波也一样。光波和其他更高频率的波(例如X射线、伽马射线、微波)一般用波长来表示,而不用频率。例如,绿色光的波长大约为400纳米。下图显示了行进波单位间的关系:

深入浅出的讲解:信号调制到底是如何实现的

正弦波的基本单位。

假设信号速度恒定,则波长和频率是可以换算的,不过这已超出本文的讨论范畴。

不同复杂性的信息信号

如果发送一个纯正弦波信号(称为“音频”)。它不携载任何实际信息,听上去也并不好听。下图是一个正弦波的图像,X轴为时间,Y轴为电压,这是一个150Hz参考信号。

深入浅出的讲解:信号调制到底是如何实现的

单音频信号(时域)

那么为什么要看这幅图像呢?让我们来看一下时域中复杂性不断增加的信号。这是一个双音频信号(两个音频叠加在一起)。此正弦波与上一个正弦波相同,只不过又加上了另一个倍频(300Hz)的正弦波。

深入浅出的讲解:信号调制到底是如何实现的

双音频信号(时域)

那么由多个不同频率的信号是什么样的呢?

深入浅出的讲解:信号调制到底是如何实现的

多音频信号(时域)

它变得毛刺更多。您能在此图中看到的唯一真实信息便是在指定时间内的电压电平。这就是信息的本质,它极其重要——但也使分析变得复杂,更使了解调制工作变得更加困难。为此,您可能希望用另一种不同的方式(频域)绘制信号图像。它显示信号在一系列频率上的强度。让我们看一下。

为何信号的频谱很重要?

要将大量信号转换到频域中,需要进行精密的数学运算。这项工作很困难,计算量很大,必须反复练习才能掌握。我甚至定期对那些重要信号的进行卷积运算,练习我的转换能力。不管怎样,让我们看一下以上三个信号如何用这种形式来表示(这里忽略中间的推演运算)。我们不再绘制信号电压随时间的变化,而是绘制信号功率随频率的变化。

深入浅出的讲解:信号调制到底是如何实现的

单音频信号(频域)

深入浅出的讲解:信号调制到底是如何实现的

双音频信号(频域)

深入浅出的讲解:信号调制到底是如何实现的

多音频信号(频域)

注意到图中明显的尖峰了吗?那是正弦波在特定频率(X轴)上的数学表示。理想情况下,这些尖峰应当是无限窄(宽度)和无限高的,但是受我所使用的Spice软件的技术水平限制,它是不完美的。这种信号称为脉冲信号。有关此信号的详细说明,请阅读此处!对于这个音频,我们看到在频域看到一个尖峰,在150Hz处。而双音频信号在频域有两个尖峰,在150Hz和300Hz处。多音频信号在时域中基本无法解读,时域信号中众多的小尖峰,是多个频率点的叠加组成的。

最后举一个例子,一个实际的音频信号。如下图,我采样了15秒歌手Cream的歌曲《白色的房间(WhiteRoom)》。不必为信号长的摸样担心,在EricClapton的吉他独奏期间,任何麦克风都没有损坏。

深入浅出的讲解:信号调制到底是如何实现的

音频信号

这就是大多数信号的看上去的样子,尤其是模拟信号。人和乐器的声音并不是在离散的频率上播放,其频率内容分布在整个频率范围内(尽管某些内容几乎是听不到的)。这个范围在3Hz至20kHz之间,大约就是人耳能够听到的频率范围。低音部的频率较低,高音部的频率较高。Y轴标度用dB表示,dB表示一个比例,没有单位。在本质上来说,dB值越高,那个频率对应的信号就越高。

理论上,我们可以用无数个音频信号累加之和来表示这个模拟信号。

滤波器

幸好频域的图形表示可为滤波器设计提供一些帮助。滤波器有四种类型,包括:

  • 低通滤波器:高于“截止频率”的所有频率都被滤除。

  • 高通滤波器:低于“截止频率”的所有频率都被滤除。

  • 带通滤波器:距离“中心频率”一定范围外的所有频率都被滤除。

  • 带阻滤波器:距离“中心频率”一定范围内的所有频率都被滤除。

深入浅出的讲解:信号调制到底是如何实现的

由上而下:带通滤波器、低通滤波器、高通滤波器

“3dB”点是信号输出降低大约30%的地方。dB是一个对数标度:

x[dB]=10*log(x[linear])

x[linear]=10^(x[dB]/10)

基于这个公式,x[linear]=0.7,对应的x[dB]大约为-3.0dB,0.7就是70%,就是信号衰减30%,这时对应的频率就称为滤波器的截止频率。汽车音响就是一个实际的例子,它可能包括一个“分频器”,其特殊的滤波器设计可将低频切换至低音扬声器、高频切换至高音扬声器。这对于无线接收机是非常重要的。

FCC通信频段

FCC和其他国际组织一致认为,如果任由任何人随意使用任何频率,那么必然会导致绝对的混乱。因此,应为不同用户分配不同的频率范围。例如分别为FM无线电、AM无线电、WiFi、移动电话、海事通信、空中交通管制、业余无线电、对讲机、军事通信、警用电台等应用分配不同频段。对了,我们还没提卫星或空间通信!这真是太乱了,幸亏有FCC帮助管理。如果您感到好奇,不妨用谷歌搜索一下,马上就能找到一个更详细的图表。

深入浅出的讲解:信号调制到底是如何实现的

FCC频谱分配表

FCC已为小范围的个人应用、业余爱好者的应用和其他常规“ISM频段”应用(工业、科学、医疗)预留了部分频段。这就是WiFi、对讲机、无线传感器和其他通信设备的工作频段。让我们再次讨论一下频率!人耳的听力范围为20Hz至20kHz。如果我们的AM电台为680kHz,那么无线电塔如何将声音变到该频率呢?它如何避免干扰到其他电台?接收机如何将信号频率转换回可听范围?

调制

让我们离开频域,回到时域。再次重申一下:我们的讨论过于简单,略过了很多细节!在此只是为了得到一个概念性的结果。之所以这么说是因为,数学表示最适合在时域中使用,而图形表示在频域中效果最佳。

调制的作用就是将信号从低频(信息)转换到高频(载波)。思路很简单:用您的信息乘以高频载波,例如680kHz,这就是AM广播!稍等一下,事情果真如此简单吗?让我们看几个数学关系式。在此例中,θ就是信息(可听内容),φ是载波(例如,AM广播频率)。

深入浅出的讲解:信号调制到底是如何实现的

图中文字中英对照

深入浅出的讲解:信号调制到底是如何实现的

我们的AM信号如果用公式来表达,涉及多个信号的乘法运算,这在时域或频域中是很难想像的,因为我们仅仅看到音频是什么样的。但是上述这种对应关系告诉我们:两个信号相乘可用两个信号相加来表示!现在,我们很容易在频域中绘制出经乘法运算得到的信号。

深入浅出的讲解:信号调制到底是如何实现的

在载波(1000Hz)上调制的单音频(150Hz)

在此图中,我们用150Hz音频乘以1000Hz载波。上表显示了两个半功率信号,分别位于1000-150和1000+150Hz处,也就是在850Hz和1150Hz处。那么当经过调制后,我们每个音节的表现如何呢?

深入浅出的讲解:信号调制到底是如何实现的

声音调制到700kHz

不出所料,我们看到了两个信号。一个是载波+信息,另一个是载波-信息(甚至注意到它是如何反转的)。

这就是AM频谱和信号内容的大致图解。

深入浅出的讲解:信号调制到底是如何实现的

解调

现在我们来讨论接收机。所有信号均从天线开始,在同一时间查看所有信号,看到的是一团乱麻。天线拾取到大量的数据,但它并不负责进行分类,这是调谐器和其他硬件的工作。信号解调的原理与调制原理完全相同,非常方便!要将我们的音频信号转回到“基带”,并将其发送至扬声器,我们可以再次用载波乘以所有信号。

深入浅出的讲解:信号调制到底是如何实现的

这个公式中包含一大串数学函数、括号和频率变量。不过它是对的,我们由此导出了四个信号:

1/4功率信号,(2*载波+信息)

1/4功率信号,(信息)

1/4功率信号,(2*载波-信息)

1/4功率信号,(-信息)

让我们忽略这个包含负频率的项,它是我们讨论调制及涉及的运算时,常常会出现的数学产物。在双倍载波上的两个信号(假设载波远大于信息,它们几乎是相同的)可用低通滤波器滤出。低通滤波器会阻断信号的所有高频内容,于是只将原始信息留给我们。我们可用放大器放大原始信息,然后发送到扬声器。太酷了!这就是它的图像,但是要向后延迟一点。

结论

本文的目的是高度概括地介绍无线电信号是如何传输和调制的。通过将多个音频(或基带)信号乘以不同的高频信号(载波),我们可以通过同一个信道成功传输多个数据流而不会相互干扰。再次用载波相乘,将调制的信号转换回基带,再用低通滤波器和放大器清理并放大信号,即可让我们听到各种美妙动听的声音!

无线电 相关文章推荐
全国FM电台频率大全 - 26 西藏自治区
Mar 11 无线电
收音机玩机评测 406 篇视频合集
Mar 11 无线电
短波问题解答
Feb 28 无线电
比特率,大家看看这个就不用收音机音质去比MP3音质了
Mar 01 无线电
晶体管来复再生式二管收音机
Mar 02 无线电
SONY ICF-SW7600的电路分析
Mar 02 无线电
天津市收音机工业发展史
Mar 04 无线电
警用民用对讲机找不同
Feb 18 无线电
电频谱管理的原则是什么
Feb 18 无线电
部分武汉产收音机展览
Apr 07 无线电
索尼ICF-36收音机评测
Apr 30 无线电
对讲机的最大通讯距离是多少
业余无线电通联Q语
Feb 18 #无线电
船舶调度指挥系统——助力智慧海事
24年收藏2000多部退役军用电台
Feb 18 #无线电
高性能跳频抗干扰宽带自组网电台
警用民用对讲机找不同
Feb 18 #无线电
工厂无线对讲系统解决方案
You might like
PHP转换文件夹下所有文件编码的实现代码
2013/06/06 PHP
php读取二进制流(C语言结构体struct数据文件)的深入解析
2013/06/13 PHP
php中请求url的五种方法总结
2017/07/13 PHP
PHP去除空数组且数组键名重置的讲解
2019/02/28 PHP
用jscript实现新建word文档
2007/06/15 Javascript
用javascript实现点击链接弹出"图片另存为"而不是直接打开
2007/08/15 Javascript
手机平板等移动端适配跳转URL的js代码
2014/01/25 Javascript
深入浅出理解javaScript原型链
2015/05/09 Javascript
jQuery javascript获得网页的高度与宽度的实现代码
2016/04/26 Javascript
利用JS提交表单的几种方法和验证(必看篇)
2016/09/17 Javascript
细数JavaScript 一个等号,两个等号,三个等号的区别
2016/10/09 Javascript
微信小程序中用WebStorm使用LESS
2017/03/08 Javascript
react以create-react-app为基础创建项目
2018/03/14 Javascript
JQuery搜索框自动补全(模糊匹配)功能实现示例
2019/01/08 jQuery
file-loader打包图片文件时路径错误输出为[object-module]的解决方法
2020/01/03 Javascript
javascript使用Blob对象实现的下载文件操作示例
2020/04/18 Javascript
JS图片懒加载技术实现过程解析
2020/07/27 Javascript
Python中index()和seek()的用法(详解)
2017/04/27 Python
python数据处理实战(必看篇)
2017/06/11 Python
python实现字符串中字符分类及个数统计
2018/09/28 Python
Python实现微信消息防撤回功能的实例代码
2019/04/29 Python
Python学习笔记之For循环用法详解
2019/08/14 Python
python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)
2020/04/07 Python
python中Django文件上传方法详解
2020/08/05 Python
Django框架安装及项目创建过程解析
2020/09/14 Python
建筑工程技术应届生求职信
2013/11/17 职场文书
英文自我鉴定
2013/12/10 职场文书
市场部规章制度
2014/01/24 职场文书
运动会标语
2014/06/21 职场文书
流动人口婚育证明范本
2014/09/26 职场文书
邀请书格式范文
2015/02/02 职场文书
一百条裙子读书笔记
2015/07/01 职场文书
Nginx优化服务之网页压缩的实现方法
2021/03/31 Servers
MySQL 如何限制一张表的记录数
2021/09/14 MySQL
mysql中int(3)和int(10)的数值范围是否相同
2021/10/16 MySQL
Apache自带的ab压力测试工具的实现
2022/07/23 Servers