OpenCV+Python识别车牌和字符分割的实现


Posted in Python onJanuary 31, 2019

本篇文章主要基于python语言和OpenCV库(cv2)进行车牌区域识别和字符分割,开篇之前针对在python中安装opencv的环境这里不做介绍,可以自行安装配置!

车牌号检测需要大致分为四个部分:

1.车辆图像获取

2.车牌定位、

3.车牌字符分割

4.车牌字符识别

具体介绍

车牌定位需要用到的是图片二值化为黑白后进canny边缘检测后多次进行开运算与闭运算用于消除小块的区域,保留大块的区域,后用cv2.rectangle选取矩形框,从而定位车牌位置

车牌字符的分割前需要准备的是只保留车牌部分,将其他部分均变为黑色背景。这里我采用cv2.grabCut方法,可将图像分割成前景与背景。分割完成后,再经过二值化为黑白图后即可进行字符分割。由于图像中只有黑色和白色像素,因此我们需要通过图像的白色像素和黑色像素来分割开字符。即分别通过判断每一行每一列的黑色白色像素值的位置,来定位出字符。

具体步骤如下:

1.灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。

2.高斯平滑和中值滤波:去除噪声。

3.Sobel算子:提取图像边缘轮廓,X方向和Y方向平方和开跟。

4.二值化处理:图像转换为黑白两色,通常像素大于127设置为255,小于设置为0。

5.膨胀和细化:放大图像轮廓,转换为一个个区域,这些区域内包含车牌。

6.通过算法选择合适的车牌位置,通常将较小的区域过滤掉或寻找蓝色底的区域。

7.标注车牌位置

8.图像切割和识别

通过代码实现:

# -*- coding: utf-8 -*-
"""
@email:cuiran2001@163.com
@author: cuiran
"""
import cv2
import numpy as np
from PIL import Image
import os.path
from skimage import io,data
def stretch(img):
 '''
 图像拉伸函数
 '''
 maxi=float(img.max())
 mini=float(img.min())

 for i in range(img.shape[0]):
  for j in range(img.shape[1]):
   img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini))

 return img

def dobinaryzation(img):
 '''
 二值化处理函数
 '''
 maxi=float(img.max())
 mini=float(img.min())

 x=maxi-((maxi-mini)/2)
 #二值化,返回阈值ret 和 二值化操作后的图像thresh
 ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY)
 #返回二值化后的黑白图像
 return thresh

def find_rectangle(contour):
 '''
 寻找矩形轮廓
 '''
 y,x=[],[]

 for p in contour:
  y.append(p[0][0])
  x.append(p[0][1])

 return [min(y),min(x),max(y),max(x)]

def locate_license(img,afterimg):
 '''
 定位车牌号
 '''
 img,contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 #找出最大的三个区域
 block=[]
 for c in contours:
  #找出轮廓的左上点和右下点,由此计算它的面积和长度比
  r=find_rectangle(c)
  a=(r[2]-r[0])*(r[3]-r[1]) #面积
  s=(r[2]-r[0])*(r[3]-r[1]) #长度比

  block.append([r,a,s])
 #选出面积最大的3个区域
 block=sorted(block,key=lambda b: b[1])[-3:]

 #使用颜色识别判断找出最像车牌的区域
 maxweight,maxindex=0,-1
 for i in range(len(block)):
  b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]]
  #BGR转HSV
  hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV)
  #蓝色车牌的范围
  lower=np.array([100,50,50])
  upper=np.array([140,255,255])
  #根据阈值构建掩膜
  mask=cv2.inRange(hsv,lower,upper)
  #统计权值
  w1=0
  for m in mask:
   w1+=m/255

  w2=0
  for n in w1:
   w2+=n

  #选出最大权值的区域
  if w2>maxweight:
   maxindex=i
   maxweight=w2

 return block[maxindex][0]

def find_license(img):
 '''
 预处理函数
 '''
 m=400*img.shape[0]/img.shape[1]

 #压缩图像
 img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC)

 #BGR转换为灰度图像
 gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 #灰度拉伸
 stretchedimg=stretch(gray_img)

 '''进行开运算,用来去除噪声'''
 r=16
 h=w=r*2+1
 kernel=np.zeros((h,w),np.uint8)
 cv2.circle(kernel,(r,r),r,1,-1)
 #开运算
 openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel)
 #获取差分图,两幅图像做差 cv2.absdiff('图像1','图像2')
 strtimg=cv2.absdiff(stretchedimg,openingimg)

 #图像二值化
 binaryimg=dobinaryzation(strtimg)

 #canny边缘检测
 canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1])

 '''消除小的区域,保留大块的区域,从而定位车牌'''
 #进行闭运算
 kernel=np.ones((5,19),np.uint8)
 closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel)

 #进行开运算
 openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel)

 #再次进行开运算
 kernel=np.ones((11,5),np.uint8)
 openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel)

 #消除小区域,定位车牌位置
 rect=locate_license(openingimg,img)

 return rect,img

def cut_license(afterimg,rect):
 '''
 图像分割函数
 '''
 #转换为宽度和高度
 rect[2]=rect[2]-rect[0]
 rect[3]=rect[3]-rect[1]
 rect_copy=tuple(rect.copy())
 rect=[0,0,0,0]
 #创建掩膜
 mask=np.zeros(afterimg.shape[:2],np.uint8)
 #创建背景模型 大小只能为13*5,行数只能为1,单通道浮点型
 bgdModel=np.zeros((1,65),np.float64)
 #创建前景模型
 fgdModel=np.zeros((1,65),np.float64)
 #分割图像
 cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
 mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8')
 img_show=afterimg*mask2[:,:,np.newaxis]

 return img_show

def deal_license(licenseimg):
 '''
 车牌图片二值化
 '''
 #车牌变为灰度图像
 gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY)

 #均值滤波 去除噪声
 kernel=np.ones((3,3),np.float32)/9
 gray_img=cv2.filter2D(gray_img,-1,kernel)

 #二值化处理
 ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY)

 return thresh


def find_end(start,arg,black,white,width,black_max,white_max):
 end=start+1
 for m in range(start+1,width-1):
  if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max):
   end=m
   break
 return end


if __name__=='__main__':
 img=cv2.imread('test_images/car001.jpg',cv2.IMREAD_COLOR)
 #预处理图像
 rect,afterimg=find_license(img)

 #框出车牌号
 cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2)
 cv2.imshow('afterimg',afterimg)

 #分割车牌与背景
 cutimg=cut_license(afterimg,rect)
 cv2.imshow('cutimg',cutimg)

 #二值化生成黑白图
 thresh=deal_license(cutimg)
 cv2.imshow('thresh',thresh)
 cv2.waitKey(0)

 #分割字符
 '''
 判断底色和字色
 '''
 #记录黑白像素总和
 white=[]
 black=[]
 height=thresh.shape[0] #263
 width=thresh.shape[1] #400
 #print('height',height)
 #print('width',width)
 white_max=0
 black_max=0
 #计算每一列的黑白像素总和
 for i in range(width):
  line_white=0
  line_black=0
  for j in range(height):
   if thresh[j][i]==255:
    line_white+=1
   if thresh[j][i]==0:
    line_black+=1
  white_max=max(white_max,line_white)
  black_max=max(black_max,line_black)
  white.append(line_white)
  black.append(line_black)
  print('white',white)
  print('black',black)
 #arg为true表示黑底白字,False为白底黑字
 arg=True
 if black_max<white_max:
  arg=False

 n=1
 start=1
 end=2
 s_width=28
 s_height=28
 while n<width-2:
  n+=1
  #判断是白底黑字还是黑底白字 0.05参数对应上面的0.95 可作调整
  if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max):
   start=n
   end=find_end(start,arg,black,white,width,black_max,white_max)
   n=end
   if end-start>5:
    cj=thresh[1:height,start:end]

    # new_image = cj.resize((s_width,s_height),Image.BILINEAR)
    # cj=cj.reshape(28, 28)
    print("result/%s.jpg" % (n))
    #保存分割的图片 by cayden
    # cj.save("result/%s.jpg" % (n))
    infile="result/%s.jpg" % (n)
    io.imsave(infile,cj)

    # im = Image.open(infile)
    # out=im.resize((s_width,s_height),Image.BILINEAR)
    # out.save(infile)

    cv2.imshow('cutlicense',cj)
    cv2.waitKey(0)


 cv2.waitKey(0)
 cv2.destroyAllWindows()

运行效果如图所示

车牌定位并进行处理

OpenCV+Python识别车牌和字符分割的实现

车牌分割如图所示

OpenCV+Python识别车牌和字符分割的实现

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python and、or以及and-or语法总结
Apr 14 Python
举例讲解Python中的Null模式与桥接模式编程
Feb 02 Python
Python模拟脉冲星伪信号频率实例代码
Jan 03 Python
基于pandas将类别属性转化为数值属性的方法
Jul 25 Python
python pandas模块基础学习详解
Jul 03 Python
python多任务之协程的使用详解
Aug 26 Python
pytorch实现CNN卷积神经网络
Feb 19 Python
Windows 下python3.8环境安装教程图文详解
Mar 11 Python
python实现猜单词游戏
May 22 Python
用Python 爬取猫眼电影数据分析《无名之辈》
Jul 24 Python
Python在centos7.6上安装python3.9的详细教程(默认python版本为2.7.5)
Oct 15 Python
Python用摘要算法生成token及检验token的示例代码
Dec 01 Python
Python3删除排序数组中重复项的方法分析
Jan 31 #Python
对python判断ip是否可达的实例详解
Jan 31 #Python
对python:threading.Thread类的使用方法详解
Jan 31 #Python
python实现一个简单的ping工具方法
Jan 31 #Python
Python获取网段内ping通IP的方法
Jan 31 #Python
Python实现删除排序数组中重复项的两种方法示例
Jan 31 #Python
python重试装饰器的简单实现方法
Jan 31 #Python
You might like
PHP无刷新上传文件实现代码
2011/09/19 PHP
在Win7 中为php扩展配置Xcache
2014/10/08 PHP
php银联网页支付实现方法
2015/03/04 PHP
Yii基于数组和对象的Model查询技巧实例详解
2015/12/28 PHP
JS 建立对象的方法
2007/04/21 Javascript
js实现网站首页图片滚动显示
2013/02/04 Javascript
用JavaScript实现类似于ListBox功能示例代码
2014/03/09 Javascript
Javascript获取表单名称(name)的方法
2015/04/02 Javascript
NodeJS连接MongoDB数据库时报错的快速解决方法
2016/05/13 NodeJs
jQuery操作dom实现弹出页面遮罩层(web端和移动端阻止遮罩层的滑动)
2016/08/25 Javascript
JS实现简单的tab切换选项卡效果
2016/09/21 Javascript
详解js产生对象的3种基本方式(工厂模式,构造函数模式,原型模式)
2017/01/09 Javascript
基于vue2框架的机器人自动回复mini-project实例代码
2017/06/13 Javascript
基于javaScript的this指向总结
2017/07/22 Javascript
Vue上传组件vue Simple Uploader的用法示例
2017/08/25 Javascript
jquery实现限制textarea输入字数的方法
2017/09/06 jQuery
js原生实现移动端手指滑动轮播图效果的示例
2018/01/02 Javascript
vue脚手架搭建过程图解
2018/06/06 Javascript
JS实现图片拖拽交换效果
2018/11/30 Javascript
JS/HTML5游戏常用算法之碰撞检测 像素检测算法实例详解
2018/12/12 Javascript
深入理解 JS 垃圾回收
2019/06/03 Javascript
一次让你了解全部JavaScript的作用域
2019/06/24 Javascript
Vue组件实现触底判断
2019/06/26 Javascript
vue draggable resizable gorkys与v-chart使用与总结
2019/09/05 Javascript
微信小程序报错: thirdScriptError的错误问题
2020/06/19 Javascript
jQuery带控制按钮轮播图插件
2020/07/31 jQuery
ant-design表单处理和常用方法及自定义验证操作
2020/10/27 Javascript
Ant Design的可编辑Tree的实现操作
2020/10/31 Javascript
javascript中闭包closure的深入讲解
2021/03/03 Javascript
python检测服务器是否正常
2014/02/16 Python
Python运算符重载用法实例分析
2015/06/01 Python
python能做哪些生活有趣的事情
2020/09/09 Python
Html5游戏开发之乒乓Ping Pong游戏示例(三)
2013/01/21 HTML / CSS
转预备党员政审材料
2014/02/06 职场文书
调解协议书
2014/04/16 职场文书
2015年团委副书记工作总结
2015/07/23 职场文书