OpenCV+Python识别车牌和字符分割的实现


Posted in Python onJanuary 31, 2019

本篇文章主要基于python语言和OpenCV库(cv2)进行车牌区域识别和字符分割,开篇之前针对在python中安装opencv的环境这里不做介绍,可以自行安装配置!

车牌号检测需要大致分为四个部分:

1.车辆图像获取

2.车牌定位、

3.车牌字符分割

4.车牌字符识别

具体介绍

车牌定位需要用到的是图片二值化为黑白后进canny边缘检测后多次进行开运算与闭运算用于消除小块的区域,保留大块的区域,后用cv2.rectangle选取矩形框,从而定位车牌位置

车牌字符的分割前需要准备的是只保留车牌部分,将其他部分均变为黑色背景。这里我采用cv2.grabCut方法,可将图像分割成前景与背景。分割完成后,再经过二值化为黑白图后即可进行字符分割。由于图像中只有黑色和白色像素,因此我们需要通过图像的白色像素和黑色像素来分割开字符。即分别通过判断每一行每一列的黑色白色像素值的位置,来定位出字符。

具体步骤如下:

1.灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。

2.高斯平滑和中值滤波:去除噪声。

3.Sobel算子:提取图像边缘轮廓,X方向和Y方向平方和开跟。

4.二值化处理:图像转换为黑白两色,通常像素大于127设置为255,小于设置为0。

5.膨胀和细化:放大图像轮廓,转换为一个个区域,这些区域内包含车牌。

6.通过算法选择合适的车牌位置,通常将较小的区域过滤掉或寻找蓝色底的区域。

7.标注车牌位置

8.图像切割和识别

通过代码实现:

# -*- coding: utf-8 -*-
"""
@email:cuiran2001@163.com
@author: cuiran
"""
import cv2
import numpy as np
from PIL import Image
import os.path
from skimage import io,data
def stretch(img):
 '''
 图像拉伸函数
 '''
 maxi=float(img.max())
 mini=float(img.min())

 for i in range(img.shape[0]):
  for j in range(img.shape[1]):
   img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini))

 return img

def dobinaryzation(img):
 '''
 二值化处理函数
 '''
 maxi=float(img.max())
 mini=float(img.min())

 x=maxi-((maxi-mini)/2)
 #二值化,返回阈值ret 和 二值化操作后的图像thresh
 ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY)
 #返回二值化后的黑白图像
 return thresh

def find_rectangle(contour):
 '''
 寻找矩形轮廓
 '''
 y,x=[],[]

 for p in contour:
  y.append(p[0][0])
  x.append(p[0][1])

 return [min(y),min(x),max(y),max(x)]

def locate_license(img,afterimg):
 '''
 定位车牌号
 '''
 img,contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 #找出最大的三个区域
 block=[]
 for c in contours:
  #找出轮廓的左上点和右下点,由此计算它的面积和长度比
  r=find_rectangle(c)
  a=(r[2]-r[0])*(r[3]-r[1]) #面积
  s=(r[2]-r[0])*(r[3]-r[1]) #长度比

  block.append([r,a,s])
 #选出面积最大的3个区域
 block=sorted(block,key=lambda b: b[1])[-3:]

 #使用颜色识别判断找出最像车牌的区域
 maxweight,maxindex=0,-1
 for i in range(len(block)):
  b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]]
  #BGR转HSV
  hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV)
  #蓝色车牌的范围
  lower=np.array([100,50,50])
  upper=np.array([140,255,255])
  #根据阈值构建掩膜
  mask=cv2.inRange(hsv,lower,upper)
  #统计权值
  w1=0
  for m in mask:
   w1+=m/255

  w2=0
  for n in w1:
   w2+=n

  #选出最大权值的区域
  if w2>maxweight:
   maxindex=i
   maxweight=w2

 return block[maxindex][0]

def find_license(img):
 '''
 预处理函数
 '''
 m=400*img.shape[0]/img.shape[1]

 #压缩图像
 img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC)

 #BGR转换为灰度图像
 gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 #灰度拉伸
 stretchedimg=stretch(gray_img)

 '''进行开运算,用来去除噪声'''
 r=16
 h=w=r*2+1
 kernel=np.zeros((h,w),np.uint8)
 cv2.circle(kernel,(r,r),r,1,-1)
 #开运算
 openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel)
 #获取差分图,两幅图像做差 cv2.absdiff('图像1','图像2')
 strtimg=cv2.absdiff(stretchedimg,openingimg)

 #图像二值化
 binaryimg=dobinaryzation(strtimg)

 #canny边缘检测
 canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1])

 '''消除小的区域,保留大块的区域,从而定位车牌'''
 #进行闭运算
 kernel=np.ones((5,19),np.uint8)
 closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel)

 #进行开运算
 openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel)

 #再次进行开运算
 kernel=np.ones((11,5),np.uint8)
 openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel)

 #消除小区域,定位车牌位置
 rect=locate_license(openingimg,img)

 return rect,img

def cut_license(afterimg,rect):
 '''
 图像分割函数
 '''
 #转换为宽度和高度
 rect[2]=rect[2]-rect[0]
 rect[3]=rect[3]-rect[1]
 rect_copy=tuple(rect.copy())
 rect=[0,0,0,0]
 #创建掩膜
 mask=np.zeros(afterimg.shape[:2],np.uint8)
 #创建背景模型 大小只能为13*5,行数只能为1,单通道浮点型
 bgdModel=np.zeros((1,65),np.float64)
 #创建前景模型
 fgdModel=np.zeros((1,65),np.float64)
 #分割图像
 cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
 mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8')
 img_show=afterimg*mask2[:,:,np.newaxis]

 return img_show

def deal_license(licenseimg):
 '''
 车牌图片二值化
 '''
 #车牌变为灰度图像
 gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY)

 #均值滤波 去除噪声
 kernel=np.ones((3,3),np.float32)/9
 gray_img=cv2.filter2D(gray_img,-1,kernel)

 #二值化处理
 ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY)

 return thresh


def find_end(start,arg,black,white,width,black_max,white_max):
 end=start+1
 for m in range(start+1,width-1):
  if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max):
   end=m
   break
 return end


if __name__=='__main__':
 img=cv2.imread('test_images/car001.jpg',cv2.IMREAD_COLOR)
 #预处理图像
 rect,afterimg=find_license(img)

 #框出车牌号
 cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2)
 cv2.imshow('afterimg',afterimg)

 #分割车牌与背景
 cutimg=cut_license(afterimg,rect)
 cv2.imshow('cutimg',cutimg)

 #二值化生成黑白图
 thresh=deal_license(cutimg)
 cv2.imshow('thresh',thresh)
 cv2.waitKey(0)

 #分割字符
 '''
 判断底色和字色
 '''
 #记录黑白像素总和
 white=[]
 black=[]
 height=thresh.shape[0] #263
 width=thresh.shape[1] #400
 #print('height',height)
 #print('width',width)
 white_max=0
 black_max=0
 #计算每一列的黑白像素总和
 for i in range(width):
  line_white=0
  line_black=0
  for j in range(height):
   if thresh[j][i]==255:
    line_white+=1
   if thresh[j][i]==0:
    line_black+=1
  white_max=max(white_max,line_white)
  black_max=max(black_max,line_black)
  white.append(line_white)
  black.append(line_black)
  print('white',white)
  print('black',black)
 #arg为true表示黑底白字,False为白底黑字
 arg=True
 if black_max<white_max:
  arg=False

 n=1
 start=1
 end=2
 s_width=28
 s_height=28
 while n<width-2:
  n+=1
  #判断是白底黑字还是黑底白字 0.05参数对应上面的0.95 可作调整
  if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max):
   start=n
   end=find_end(start,arg,black,white,width,black_max,white_max)
   n=end
   if end-start>5:
    cj=thresh[1:height,start:end]

    # new_image = cj.resize((s_width,s_height),Image.BILINEAR)
    # cj=cj.reshape(28, 28)
    print("result/%s.jpg" % (n))
    #保存分割的图片 by cayden
    # cj.save("result/%s.jpg" % (n))
    infile="result/%s.jpg" % (n)
    io.imsave(infile,cj)

    # im = Image.open(infile)
    # out=im.resize((s_width,s_height),Image.BILINEAR)
    # out.save(infile)

    cv2.imshow('cutlicense',cj)
    cv2.waitKey(0)


 cv2.waitKey(0)
 cv2.destroyAllWindows()

运行效果如图所示

车牌定位并进行处理

OpenCV+Python识别车牌和字符分割的实现

车牌分割如图所示

OpenCV+Python识别车牌和字符分割的实现

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python批量生成本地ip地址的方法
Mar 23 Python
用Python计算三角函数之acos()方法的使用
May 15 Python
Python实现带百分比的进度条
Jun 28 Python
使用python调用zxing库生成二维码图片详解
Jan 10 Python
python实现的二叉树定义与遍历算法实例
Jun 30 Python
python将回车作为输入内容的实例
Jun 23 Python
python批量赋值操作实例
Oct 22 Python
Python3 实现串口两进程同时读写
Jun 12 Python
pyinstaller打包单个exe后无法执行错误的解决方法
Jun 21 Python
PyTorch中permute的用法详解
Dec 30 Python
From CSV to SQLite3 by python 导入csv到sqlite实例
Feb 14 Python
[原创]赚疯了!转手立赚800+?大佬的python「抢茅台脚本」使用教程
Jan 12 Python
Python3删除排序数组中重复项的方法分析
Jan 31 #Python
对python判断ip是否可达的实例详解
Jan 31 #Python
对python:threading.Thread类的使用方法详解
Jan 31 #Python
python实现一个简单的ping工具方法
Jan 31 #Python
Python获取网段内ping通IP的方法
Jan 31 #Python
Python实现删除排序数组中重复项的两种方法示例
Jan 31 #Python
python重试装饰器的简单实现方法
Jan 31 #Python
You might like
PHP数组对比函数,存在交集则返回真,否则返回假
2011/02/03 PHP
FirePHP 推荐一款PHP调试工具
2011/04/23 PHP
php控制linux服务器常用功能 关机 重启 开新站点等
2012/09/05 PHP
PHP开源开发框架ZendFramework使用中常见问题说明及解决方案
2014/06/12 PHP
jQuery+PHP实现的掷色子抽奖游戏实例
2015/01/04 PHP
php二维数组合并及去重复的方法
2015/03/04 PHP
wampserver改变默认网站目录的办法
2015/08/05 PHP
总结对比php中的多种序列化
2016/08/28 PHP
php-fpm服务启动脚本的方法
2018/04/27 PHP
JavaScript面向对象(极简主义法minimalist approach)
2012/07/17 Javascript
js的2种继承方式详解
2014/03/04 Javascript
JavaScript函数的4种调用方法详解
2014/04/22 Javascript
node.js中的fs.mkdirSync方法使用说明
2014/12/17 Javascript
jquery+easeing实现仿flash的载入动画
2015/03/10 Javascript
javascript字符串与数组转换汇总
2015/05/26 Javascript
javascript的列表切换【实现代码】
2016/05/03 Javascript
Bootstrap3 内联单选和多选框
2016/12/29 Javascript
Angularjs上传文件组件flowjs功能
2017/08/07 Javascript
利用JS hash制作单页Web应用的方法详解
2017/10/10 Javascript
JS脚本加载后执行相应回调函数的操作方法
2018/02/28 Javascript
Vue.js实现表格渲染的方法
2018/09/07 Javascript
vue vue-Router默认hash模式修改为history需要做的修改详解
2018/09/13 Javascript
利用原生的JavaScript实现简单拼图游戏
2018/11/18 Javascript
JavaScript进阶(一)变量声明提升实例分析
2020/05/09 Javascript
pandas对指定列进行填充的方法
2018/04/11 Python
Python Flask前后端Ajax交互的方法示例
2018/07/31 Python
浅谈django rest jwt vue 跨域问题
2018/10/26 Python
python 使用while循环输出*组成的菱形实例
2020/04/12 Python
怎样写好自我评价呢?
2014/02/16 职场文书
优秀的导游求职信范文
2014/04/06 职场文书
员工安全生产承诺书
2014/05/22 职场文书
装修施工安全责任书
2014/07/24 职场文书
个人四风对照检查材料
2014/09/26 职场文书
《巨人的花园》教学反思
2016/02/19 职场文书
Python利用Turtle绘制哆啦A梦和小猪佩奇
2022/04/04 Python
不想升级Win11?教你彻底锁定老版Windows系统的方法(附下载地址)
2022/09/23 数码科技