Python如何把Spark数据写入ElasticSearch


Posted in Python onApril 18, 2020

这里以将Apache的日志写入到ElasticSearch为例,来演示一下如何使用Python将Spark数据导入到ES中。

实际工作中,由于数据与使用框架或技术的复杂性,数据的写入变得比较复杂,在这里我们简单演示一下。

如果使用Scala或Java的话,Spark提供自带了支持写入ES的支持库,但Python不支持。所以首先你需要去这里下载依赖的ES官方开发的依赖包包。

下载完成后,放在本地目录,以下面命令方式启动pyspark:

pyspark --jars elasticsearch-hadoop-6.4.1.jar

如果你想pyspark使用Python3,请设置环境变量:

export PYSPARK_PYTHON=/usr/bin/python3
理解如何写入ES的关键是要明白,ES是一个JSON格式的数据库,它有一个必须的要求。数据格式必须采用以下格式

{ "id: { the rest of your json}}

往下会展示如何转换成这种格式。

解析Apache日志文件
我们将Apache的日志文件读入,构建Spark RDD。然后我们写一个parse()函数用正则表达式处理每条日志,提取我们需要的字

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")
regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)
def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d

换句话说,我们刚开始从日志文件读入RDD的数据类似如下:

['83.149.9.216 - - [17/May/2015:10:05:03 +0000] "GET /presentations/logstash-monitorama-2013/images/kibana-search.png HTTP/1.1" 200 203023 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"']

然后我们使用map函数转换每条记录:

rdd2 = rdd.map(parse)

rdd2.take(1)

[{'date': '17/May/2015:10:05:03 +0000', 'ip': '83.149.9.216', 'operation': 'GET', 'uri': '/presentations/logstash-monitorama-2013/images/kibana-search.png'}]

现在看起来像JSON,但并不是JSON字符串,我们需要使用json.dumps将dict对象转换。

我们同时增加一个doc_id字段作为整个JSON的ID。在配置ES中我们增加如下配置“es.mapping.id”: “doc_id”告诉ES我们将这个字段作为ID。

这里我们使用SHA算法,将这个JSON字符串作为参数,得到一个唯一ID。
计算结果类似如下,可以看到ID是一个很长的SHA数值。

rdd3.take(1)

[('a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c', '{"date": "17/May/2015:10:05:03 +0000", "ip": "83.149.9.216", "operation": "GET", "doc_id": "a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c", "uri": "/presentations/logstash-monitorama-2013/images/kibana-search.png"}')]

现在我们需要制定ES配置,比较重要的两项是:

  • “es.resource” : ‘walker/apache': "walker"是索引,apache是类型,两者一般合称索引
  • “es.mapping.id”: “doc_id”: 告诉ES那个字段作为整个文档的ID,也就是查询结果中的_id

其他的配置自己去探索。

然后我们使用saveAsNewAPIHadoopFile()将RDD写入到ES。这部分代码对于所有的ES都是一样的,比较固定,不需要理解每一个细节

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
    
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

rdd3 = rdd2.map(addID)

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

最后我们可以使用curl进行查询

curl http://localhost:9200s/walker/apache/_search?pretty=true&?q=*
{
    "_index" : "walker",
    "_type" : "apache",
    "_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
    "_score" : 1.0,
    "_source" : {
     "date" : "17/May/2015:10:05:32 +0000",
     "ip" : "91.177.205.119",
     "operation" : "GET",
     "doc_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
     "uri" : "/favicon.ico"
    }

如下是所有代码:

import json
import hashlib
import re

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d  

regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")

rdd2 = rdd.map(parse)

rdd3 = rdd2.map(addID)

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
   
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

也可以这么封装,其实原理是一样的

import hashlib
import json
from pyspark import Sparkcontext

def make_md5(line):
  md5_obj=hashlib.md5()
  md5_obj.encode(line)
  return md5_obj.hexdigest()

def parse(line):
  dic={}
  l = line.split('\t')
  doc_id=make_md5(line)
  dic['name']=l[1]
  dic['age'] =l[2]
  dic['doc_id']=doc_id
  return dic  #记得这边返回的是字典类型的,在写入es之前要记得dumps

def saveData2es(pdd, es_host, port,index, index_type, key):
  """
  把saprk的运行结果写入es
  :param pdd: 一个rdd类型的数据
  :param es_host: 要写es的ip
  :param index: 要写入数据的索引
  :param index_type: 索引的类型
  :param key: 指定文档的id,就是要以文档的那个字段作为_id
  :return:
  """
  #实例es客户端记得单例模式
  if es.exist.index(index):
    es.index.create(index, 'spo')
  es_write_conf = {
    "es.nodes": es_host,
    "es.port": port,
    "es.resource": index/index_type,
    "es.input.json": "yes",
    "es.mapping.id": key
  }

  (pdd.map(lambda _dic: ('', json.dumps(_dic))))  #这百年是为把这个数据构造成元组格式,如果传进来的_dic是字典则需要jdumps,如果传进来之前就已经dumps,这便就不需要dumps了
  .saveAsNewAPIHadoopFile(
    path='-',
    outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat", keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)
  )
if __name__ == '__main__':
  #实例化sp对象
  sc=Sparkcontext()
  #文件中的呢内容一行一行用sc的读取出来
  json_text=sc.textFile('./1.txt')
  #进行转换
  json_data=json_text.map(lambda line:parse(line))

  saveData2es(json_data,'127.0.01','9200','index_test','index_type','doc_id')

  sc.stop()

看到了把,面那个例子在写入es之前加了一个id,返回一个元组格式的,现在这个封装指定_id就会比较灵活了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
numpy.delete删除一列或多列的方法
Apr 03 Python
解决pycharm py文件运行后停止按钮变成了灰色的问题
Nov 29 Python
python中yield的用法详解——最简单,最清晰的解释
Apr 04 Python
django的csrf实现过程详解
Jul 26 Python
Flask框架实现的前端RSA加密与后端Python解密功能详解
Aug 13 Python
Transpose 数组行列转置的限制方式
Feb 11 Python
Python使用graphviz画流程图过程解析
Mar 31 Python
python使用for...else跳出双层嵌套循环的方法实例
May 17 Python
Python Tkinter图形工具使用方法及实例解析
Jun 15 Python
python连接mysql有哪些方法
Jun 24 Python
python和go语言的区别是什么
Jul 20 Python
Python 必须了解的5种高级特征
Sep 10 Python
Python virtualenv虚拟环境实现过程解析
Apr 18 #Python
python实现贪吃蛇双人大战
Apr 18 #Python
Python的in,is和id函数代码实例
Apr 18 #Python
Python json读写方式和字典相互转化
Apr 18 #Python
Python figure参数及subplot子图绘制代码
Apr 18 #Python
Python数组拼接np.concatenate实现过程
Apr 18 #Python
Python稀疏矩阵及参数保存代码实现
Apr 18 #Python
You might like
BBS(php & mysql)完整版(五)
2006/10/09 PHP
PHP设计模式之结构模式的深入解析
2013/06/13 PHP
php外部执行命令函数用法小结
2016/10/11 PHP
新老版本juqery获取radio对象的方法
2010/03/01 Javascript
js调用webservice中的方法实现思路及代码
2013/02/25 Javascript
JS鼠标滑过图片时切换图片实现思路
2013/09/12 Javascript
Node.js中使用事件发射器模式实现事件绑定详解
2014/08/15 Javascript
jQuery中$this和$(this)的区别介绍(一看就懂)
2015/07/06 Javascript
基于HTML+CSS,jQuery编写的简易计算器后续(添加了键盘监听)
2016/01/05 Javascript
window.onerror()的用法与实例分析
2016/01/27 Javascript
使用JS 插件qrcode.js生成二维码功能
2017/02/20 Javascript
jQuery插件FusionCharts实现的3D柱状图效果实例【附demo源码下载】
2017/03/03 Javascript
babel的使用及安装配置教程
2018/02/22 Javascript
TypeScript基础入门教程之三重斜线指令详解
2018/10/22 Javascript
js module大战
2019/04/19 Javascript
通过vue手动封装on、emit、off的代码详解
2019/05/29 Javascript
Promise扫盲贴
2019/06/24 Javascript
antd-DatePicker组件获取时间值,及相关设置方式
2020/10/27 Javascript
node脚手架搭建服务器实现token验证的方法
2021/01/20 Javascript
[03:12]TI9战队档案 - Virtus Pro
2019/08/20 DOTA
python验证码识别的实例详解
2016/09/09 Python
在Django中URL正则表达式匹配的方法
2018/12/20 Python
对Python生成汉字字库文字,以及转换为文字图片的实例详解
2019/01/29 Python
Python 通过微信控制实现app定位发送到个人服务器再转发微信服务器接收位置信息
2019/08/05 Python
python解析多层json操作示例
2019/12/30 Python
美国在线购物频道:Shop LC
2019/04/21 全球购物
你的创业计划书怎样才能打动风投
2014/02/06 职场文书
和解协议书
2014/04/16 职场文书
飞机制造技术专业求职信
2014/07/27 职场文书
平面设计专业求职信
2014/08/09 职场文书
六一儿童节活动总结
2014/08/27 职场文书
四风对照检查材料思想汇报
2014/09/20 职场文书
2014年客服工作总结范文
2014/11/13 职场文书
《时代广场的蟋蟀》读后感:真挚友情,温暖世界!
2020/01/08 职场文书
python 爬取豆瓣网页的示例
2021/04/13 Python
MySQL创建管理HASH分区
2022/04/13 MySQL