Python如何把Spark数据写入ElasticSearch


Posted in Python onApril 18, 2020

这里以将Apache的日志写入到ElasticSearch为例,来演示一下如何使用Python将Spark数据导入到ES中。

实际工作中,由于数据与使用框架或技术的复杂性,数据的写入变得比较复杂,在这里我们简单演示一下。

如果使用Scala或Java的话,Spark提供自带了支持写入ES的支持库,但Python不支持。所以首先你需要去这里下载依赖的ES官方开发的依赖包包。

下载完成后,放在本地目录,以下面命令方式启动pyspark:

pyspark --jars elasticsearch-hadoop-6.4.1.jar

如果你想pyspark使用Python3,请设置环境变量:

export PYSPARK_PYTHON=/usr/bin/python3
理解如何写入ES的关键是要明白,ES是一个JSON格式的数据库,它有一个必须的要求。数据格式必须采用以下格式

{ "id: { the rest of your json}}

往下会展示如何转换成这种格式。

解析Apache日志文件
我们将Apache的日志文件读入,构建Spark RDD。然后我们写一个parse()函数用正则表达式处理每条日志,提取我们需要的字

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")
regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)
def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d

换句话说,我们刚开始从日志文件读入RDD的数据类似如下:

['83.149.9.216 - - [17/May/2015:10:05:03 +0000] "GET /presentations/logstash-monitorama-2013/images/kibana-search.png HTTP/1.1" 200 203023 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"']

然后我们使用map函数转换每条记录:

rdd2 = rdd.map(parse)

rdd2.take(1)

[{'date': '17/May/2015:10:05:03 +0000', 'ip': '83.149.9.216', 'operation': 'GET', 'uri': '/presentations/logstash-monitorama-2013/images/kibana-search.png'}]

现在看起来像JSON,但并不是JSON字符串,我们需要使用json.dumps将dict对象转换。

我们同时增加一个doc_id字段作为整个JSON的ID。在配置ES中我们增加如下配置“es.mapping.id”: “doc_id”告诉ES我们将这个字段作为ID。

这里我们使用SHA算法,将这个JSON字符串作为参数,得到一个唯一ID。
计算结果类似如下,可以看到ID是一个很长的SHA数值。

rdd3.take(1)

[('a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c', '{"date": "17/May/2015:10:05:03 +0000", "ip": "83.149.9.216", "operation": "GET", "doc_id": "a5b086b04e1cc45fb4a19e2a641bf99ea3a378599ef62ba12563b75c", "uri": "/presentations/logstash-monitorama-2013/images/kibana-search.png"}')]

现在我们需要制定ES配置,比较重要的两项是:

  • “es.resource” : ‘walker/apache': "walker"是索引,apache是类型,两者一般合称索引
  • “es.mapping.id”: “doc_id”: 告诉ES那个字段作为整个文档的ID,也就是查询结果中的_id

其他的配置自己去探索。

然后我们使用saveAsNewAPIHadoopFile()将RDD写入到ES。这部分代码对于所有的ES都是一样的,比较固定,不需要理解每一个细节

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
    
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

rdd3 = rdd2.map(addID)

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

最后我们可以使用curl进行查询

curl http://localhost:9200s/walker/apache/_search?pretty=true&?q=*
{
    "_index" : "walker",
    "_type" : "apache",
    "_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
    "_score" : 1.0,
    "_source" : {
     "date" : "17/May/2015:10:05:32 +0000",
     "ip" : "91.177.205.119",
     "operation" : "GET",
     "doc_id" : "227e977849bfd5f8d1fca69b04f7a766560745c6cb3712c106d590c2",
     "uri" : "/favicon.ico"
    }

如下是所有代码:

import json
import hashlib
import re

def addId(data):
  j=json.dumps(data).encode('ascii', 'ignore')
  data['doc_id'] = hashlib.sha224(j).hexdigest()
  return (data['doc_id'], json.dumps(data))

def parse(str):
  s=p.match(str)
  d = {}
  d['ip']=s.group(1)
  d['date']=s.group(4)
  d['operation']=s.group(5)
  d['uri']=s.group(6)
  return d  

regex='^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+)\s?(\S+)?\s?(\S+)?" (\d{3}|-) (\d+|-)\s?"?([^"]*)"?\s?"?([^"]*)?"?$'

p=re.compile(regex)

rdd = sc.textFile("/home/ubuntu/walker/apache_logs")

rdd2 = rdd.map(parse)

rdd3 = rdd2.map(addID)

es_write_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : 'walker/apache',
    "es.input.json": "yes",
    "es.mapping.id": "doc_id"
  }
   
rdd3.saveAsNewAPIHadoopFile(
    path='-',
   outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",    keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)

也可以这么封装,其实原理是一样的

import hashlib
import json
from pyspark import Sparkcontext

def make_md5(line):
  md5_obj=hashlib.md5()
  md5_obj.encode(line)
  return md5_obj.hexdigest()

def parse(line):
  dic={}
  l = line.split('\t')
  doc_id=make_md5(line)
  dic['name']=l[1]
  dic['age'] =l[2]
  dic['doc_id']=doc_id
  return dic  #记得这边返回的是字典类型的,在写入es之前要记得dumps

def saveData2es(pdd, es_host, port,index, index_type, key):
  """
  把saprk的运行结果写入es
  :param pdd: 一个rdd类型的数据
  :param es_host: 要写es的ip
  :param index: 要写入数据的索引
  :param index_type: 索引的类型
  :param key: 指定文档的id,就是要以文档的那个字段作为_id
  :return:
  """
  #实例es客户端记得单例模式
  if es.exist.index(index):
    es.index.create(index, 'spo')
  es_write_conf = {
    "es.nodes": es_host,
    "es.port": port,
    "es.resource": index/index_type,
    "es.input.json": "yes",
    "es.mapping.id": key
  }

  (pdd.map(lambda _dic: ('', json.dumps(_dic))))  #这百年是为把这个数据构造成元组格式,如果传进来的_dic是字典则需要jdumps,如果传进来之前就已经dumps,这便就不需要dumps了
  .saveAsNewAPIHadoopFile(
    path='-',
    outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat", keyClass="org.apache.hadoop.io.NullWritable",
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
    conf=es_write_conf)
  )
if __name__ == '__main__':
  #实例化sp对象
  sc=Sparkcontext()
  #文件中的呢内容一行一行用sc的读取出来
  json_text=sc.textFile('./1.txt')
  #进行转换
  json_data=json_text.map(lambda line:parse(line))

  saveData2es(json_data,'127.0.01','9200','index_test','index_type','doc_id')

  sc.stop()

看到了把,面那个例子在写入es之前加了一个id,返回一个元组格式的,现在这个封装指定_id就会比较灵活了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Pyramid添加Middleware的方法实例
Nov 27 Python
Python常用的爬虫技巧总结
Mar 28 Python
Python字符串格式化的方法(两种)
Sep 19 Python
python获取微信小程序手机号并绑定遇到的坑
Nov 19 Python
从运行效率与开发效率比较Python和C++
Dec 14 Python
Python设计模式之迭代器模式原理与用法实例分析
Jan 10 Python
Python XML转Json之XML2Dict的使用方法
Jan 15 Python
pytorch AvgPool2d函数使用详解
Jan 03 Python
使用python 的matplotlib 画轨道实例
Jan 19 Python
Tensorflow中tf.ConfigProto()的用法详解
Feb 06 Python
python和pywin32实现窗口查找、遍历和点击的示例代码
Apr 01 Python
OpenCV+python实现实时目标检测功能
Jun 24 Python
Python virtualenv虚拟环境实现过程解析
Apr 18 #Python
python实现贪吃蛇双人大战
Apr 18 #Python
Python的in,is和id函数代码实例
Apr 18 #Python
Python json读写方式和字典相互转化
Apr 18 #Python
Python figure参数及subplot子图绘制代码
Apr 18 #Python
Python数组拼接np.concatenate实现过程
Apr 18 #Python
Python稀疏矩阵及参数保存代码实现
Apr 18 #Python
You might like
php set_time_limit(0) 设置程序执行时间的函数
2010/05/26 PHP
php通过记录IP来防止表单重复提交方法分析
2014/12/16 PHP
thinkphp3.2.3 分页代码分享
2016/07/28 PHP
php rsa 加密,解密,签名,验签详解
2016/12/06 PHP
详解php 使用Callable Closure强制指定回调类型
2017/10/26 PHP
可缩放Reloaded-一个针对可缩放元素的复用组件
2007/03/10 Javascript
javascript jQuery $.post $.ajax用法
2008/07/09 Javascript
JqGrid web打印实现代码
2011/05/31 Javascript
基于jquery的拖动布局插件
2011/11/25 Javascript
Prototype源码浅析 String部分(一)之有关indexOf优化
2012/01/15 Javascript
jquery easyui combox一些实用的小方法
2013/12/25 Javascript
JavaScript获取某年某月的最后一天附截图
2014/06/23 Javascript
8个超实用的jQuery功能代码分享
2015/01/08 Javascript
纯javascript响应式树形菜单效果
2015/11/10 Javascript
jQuery+ajax读取并解析XML文件的方法
2016/09/09 Javascript
JS判断两个对象内容是否相等的方法示例
2017/04/10 Javascript
js实现首屏延迟加载实现方法 js实现多屏单张图片延迟加载效果
2017/07/17 Javascript
d3.js实现自定义多y轴折线图的示例代码
2018/05/30 Javascript
jQuery实现高级检索功能
2019/05/28 jQuery
Vue 事件的$event参数=事件的值案例
2021/01/29 Vue.js
python基于queue和threading实现多线程下载实例
2014/10/08 Python
python基础教程之分支、循环简单用法
2016/06/16 Python
python将unicode转为str的方法
2017/06/21 Python
python爬虫实战之最简单的网页爬虫教程
2017/08/13 Python
Python 正则表达式爬虫使用案例解析
2019/09/23 Python
如何解决django-celery启动后迅速关闭
2019/10/16 Python
Pytorch 解决自定义子Module .cuda() tensor失败的问题
2020/06/23 Python
Python logging模块handlers用法详解
2020/08/14 Python
浅谈Python 钉钉报警必备知识系统讲解
2020/08/17 Python
python 如何调用远程接口
2020/09/11 Python
HTML5 Web Workers之网站也能多线程的实现
2013/04/24 HTML / CSS
英国领先的维生素和补充剂品牌:Higher Nature
2019/08/26 全球购物
给排水工程师岗位职责
2013/11/21 职场文书
公司会议开幕词
2015/01/29 职场文书
漫画《催眠麦克风-Dawn Of Divisions》第二卷PV公开
2022/04/05 日漫
利用 Python 的 Pandas和 NumPy 库来清理数据
2022/04/13 Python