Python网络爬虫中的同步与异步示例详解


Posted in Python onFebruary 03, 2018

一、同步与异步

#同步编程(同一时间只能做一件事,做完了才能做下一件事情)
<-a_url-><-b_url-><-c_url->
#异步编程 (可以近似的理解成同一时间有多个事情在做,但有先后)
<-a_url->
 <-b_url->
 <-c_url->
 <-d_url->
 <-e_url->
  <-f_url->
  <-g_url->
  <-h_url->
  <--i_url-->
   <--j_url-->

模板

import asyncio
#函数名:做现在的任务时不等待,能继续做别的任务。
async def donow_meantime_dontwait(url):
 response = await requests.get(url)
#函数名:快速高效的做任务
async def fast_do_your_thing():
 await asyncio.wait([donow_meantime_dontwait(url) for url in urls])
#下面两行都是套路,记住就好
loop = asyncio.get_event_loop()
loop.run_until_complete(fast_do_your_thing())

tips:

  • await表达式中的对象必须是awaitable
  • requests不支持非阻塞
  • aiohttp是用于异步请求的库

代码

import asyncio
import requests
import time
import aiohttp
urls = ['https://book.douban.com/tag/小说','https://book.douban.com/tag/科幻',
 'https://book.douban.com/tag/漫画','https://book.douban.com/tag/奇幻',
 'https://book.douban.com/tag/历史','https://book.douban.com/tag/经济学']
async def requests_meantime_dont_wait(url):
 print(url)
 async with aiohttp.ClientSession() as session:
 async with session.get(url) as resp:
  print(resp.status)
  print("{url} 得到响应".format(url=url))
async def fast_requsts(urls):
 start = time.time()
 await asyncio.wait([requests_meantime_dont_wait(url) for url in urls])
 end = time.time()
 print("Complete in {} seconds".format(end - start))
loop = asyncio.get_event_loop()
loop.run_until_complete(fast_requsts(urls))

gevent简介

gevent是一个python的并发库,它为各种并发和网络相关的任务提供了整洁的API。

gevent中用到的主要模式是greenlet,它是以C扩展模块形式接入Python的轻量级协程。 greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

猴子补丁

requests库是阻塞式的,为了将requests同步更改为异步。只有将requests库阻塞式更改为非阻塞,异步操作才能实现。

而gevent库中的猴子补丁(monkey patch),gevent能够修改标准库里面大部分的阻塞式系统调用。这样在不改变原有代码的情况下,将应用的阻塞式方法,变成协程式的(异步)。

代码

from gevent import monkey
import gevent
import requests
import time


monkey.patch_all()

def req(url):
 print(url)
 resp = requests.get(url)
 print(resp.status_code,url)
def synchronous_times(urls):
 """同步请求运行时间"""
 start = time.time()
 for url in urls:
 req(url)
 end = time.time()
 print('同步执行时间 {} s'.format(end-start))
def asynchronous_times(urls):
 """异步请求运行时间"""
 start = time.time()
 gevent.joinall([gevent.spawn(req,url) for url in urls])
 end = time.time()
 print('异步执行时间 {} s'.format(end - start))
urls = ['https://book.douban.com/tag/小说','https://book.douban.com/tag/科幻',
 'https://book.douban.com/tag/漫画','https://book.douban.com/tag/奇幻',
 'https://book.douban.com/tag/历史','https://book.douban.com/tag/经济学']
synchronous_times(urls)
asynchronous_times(urls)

gevent:异步理论与实战

Python网络爬虫中的同步与异步示例详解

gevent库中使用的最核心的是Greenlet-一种用C写的轻量级python模块。在任意时间,系统只能允许一个Greenlet处于运行状态

一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

串行和异步

高并发的核心是让一个大的任务分成一批子任务,并且子任务会被被系统高效率的调度,实现同步或者异步。在两个子任务之间切换,也就是经常说到的上下文切换。

同步就是让子任务串行,而异步有点影分身之术,但在任意时间点,真身只有一个,子任务并不是真正的并行,而是充分利用了碎片化的时间,让程序不要浪费在等待上。这就是异步,效率杠杆的。

gevent中的上下文切换是通过yield实现。在这个例子中,我们会有两个子任务,互相利用对方等待的时间做自己的事情。这里我们使用gevent.sleep(0)代表程序会在这里停0秒。

import gevent
def foo():
 print('Running in foo')
 gevent.sleep(0)
 print('Explicit context switch to foo again')

def bar():
 print('Explicit context to bar')
 gevent.sleep(0)
 print('Implicit context switch back to bar')

gevent.joinall([
 gevent.spawn(foo),
 gevent.spawn(bar)
 ])

运行的顺序:

Running in foo
Explicit context to bar
Explicit context switch to foo again
Implicit context switch back to bar

同步异步的顺序问题

同步运行就是串行,123456...,但是异步的顺序是随机的任意的(根据子任务消耗的时间而定)

代码

import gevent
import random
def task(pid):
 """
 Some non-deterministic task
 """
 gevent.sleep(random.randint(0,2)*0.001)
 print('Task %s done' % pid)
#同步(结果更像串行)
def synchronous():
 for i in range(1,10):
 task(i)
#异步(结果更像乱步)
def asynchronous():
 threads = [gevent.spawn(task, i) for i in range(10)]
 gevent.joinall(threads)
print('Synchronous同步:')
synchronous()
print('Asynchronous异步:')
asynchronous()

输出

Synchronous同步:
Task 1 done
Task 2 done
Task 3 done
Task 4 done
Task 5 done
Task 6 done
Task 7 done
Task 8 done
Task 9 done
Asynchronous异步:
Task 1 done
Task 5 done
Task 6 done
Task 2 done
Task 4 done
Task 7 done
Task 8 done
Task 9 done
Task 0 done
Task 3 done

同步案例中所有的任务都是按照顺序执行,这导致主程序是阻塞式的(阻塞会暂停主程序的执行)。

gevent.spawn会对传入的任务(子任务集合)进行进行调度,gevent.joinall方法会阻塞当前程序,除非所有的greenlet都执行完毕,程序才会结束。

实战

实现gevent到底怎么用,把异步访问得到的数据提取出来。

在有道词典搜索框输入“hello”按回车。观察数据请求情况 观察有道的url构建。

分析url规律

#url构建只需要传入word即可
url = "http://dict.youdao.com/w/eng/{}/".format(word)

解析网页数据

def fetch_word_info(word):
 url = "http://dict.youdao.com/w/eng/{}/".format(word)
 resp = requests.get(url,headers=headers)
 doc = pq(resp.text)
 pros = ''
 for pro in doc.items('.baav .pronounce'):
  pros+=pro.text()
 description = ''
 for li in doc.items('#phrsListTab .trans-container ul li'):
  description +=li.text()
 return {'word':word,'音标':pros,'注释':description}

因为requests库在任何时候只允许有一个访问结束完全结束后,才能进行下一次访问。无法通过正规途径拓展成异步,因此这里使用了monkey补丁

同步代码

import requests
from pyquery import PyQuery as pq
import gevent
import time
import gevent.monkey
gevent.monkey.patch_all()
words = ['good','bad','cool',
   'hot','nice','better',
   'head','up','down',
   'right','left','east']
def synchronous():
 start = time.time()
 print('同步开始了')
 for word in words:
  print(fetch_word_info(word))
 end = time.time()
 print("同步运行时间: %s 秒" % str(end - start))

#执行同步
synchronous()

异步代码

import requests
from pyquery import PyQuery as pq
import gevent
import time
import gevent.monkey
gevent.monkey.patch_all()
words = ['good','bad','cool',
   'hot','nice','better',
   'head','up','down',
   'right','left','east']
def asynchronous():
 start = time.time()
 print('异步开始了')
 events = [gevent.spawn(fetch_word_info,word) for word in words]
 wordinfos = gevent.joinall(events)
 for wordinfo in wordinfos:
  #获取到数据get方法
  print(wordinfo.get())
 end = time.time()
 print("异步运行时间: %s 秒"%str(end-start))
#执行异步
asynchronous()

我们可以对待爬网站实时异步访问,速度会大大提高。我们现在是爬取12个词语的信息,也就是说一瞬间我们对网站访问了12次,这还没啥问题,假如爬10000+个词语,使用gevent的话,那几秒钟之内就给网站一股脑的发请求,说不定网站就把爬虫封了。

解决办法

将列表等分为若干个子列表,分批爬取。举例我们有一个数字列表(0-19),要均匀的等分为4份,也就是子列表有5个数。下面是我在stackoverflow查找到的列表等分方案:

方法1

seqence = list(range(20))
size = 5 #子列表长度
output = [seqence[i:i+size] for i in range(0, len(seqence), size)]
print(output)

方法2

chunks = lambda seq, size: [seq[i: i+size] for i in range(0, len(seq), size)]
print(chunks(seq, 5))

方法3

def chunks(seq,size):
 for i in range(0,len(seq), size):
  yield seq[i:i+size]
prinT(chunks(seq,5))
 for x in chunks(req,5):
   print(x)

数据量不大的情况下,选哪一种方法都可以。如果特别大,建议使用方法3.

动手实现

import requests
from pyquery import PyQuery as pq
import gevent
import time
import gevent.monkey
gevent.monkey.patch_all()
words = ['good','bad','cool',
   'hot','nice','better',
   'head','up','down',
   'right','left','east']
def fetch_word_info(word):
 url = "http://dict.youdao.com/w/eng/{}/".format(word)
 resp = requests.get(url,headers=headers)
 doc = pq(resp.text)
 pros = ''
 for pro in doc.items('.baav .pronounce'):
  pros+=pro.text()
 description = ''
 for li in doc.items('#phrsListTab .trans-container ul li'):
  description +=li.text()
 return {'word':word,'音标':pros,'注释':description}
def asynchronous(words):
 start = time.time()
 print('异步开始了')
 chunks = lambda seq, size: [seq[i: i + size] for i in range(0, len(seq), size)]
 for subwords in chunks(words,3):
  events = [gevent.spawn(fetch_word_info, word) for word in subwords]
  wordinfos = gevent.joinall(events)
  for wordinfo in wordinfos:
   # 获取到数据get方法
   print(wordinfo.get())
  time.sleep(1)
  end = time.time()
 print("异步运行时间: %s 秒" % str(end - start))
asynchronous(words)

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python中的自定义函数学习笔记
Sep 23 Python
Python实现利用163邮箱远程关电脑脚本
Feb 22 Python
TensorFlow实现随机训练和批量训练的方法
Apr 28 Python
利用pandas进行大文件计数处理的方法
Jul 25 Python
Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】
Dec 26 Python
Python设计模式之职责链模式原理与用法实例分析
Jan 11 Python
Python中单线程、多线程和多进程的效率对比实验实例
May 14 Python
Python读取表格类型文件代码实例
Feb 17 Python
Python键鼠操作自动化库PyAutoGUI简介(小结)
May 17 Python
详解Pandas 处理缺失值指令大全
Jul 30 Python
Python实现简繁体转换
Jun 07 Python
Python实现提取PDF简历信息并存入Excel
Apr 02 Python
Python模块文件结构代码详解
Feb 03 #Python
Python处理文本换行符实例代码
Feb 03 #Python
Python断言assert的用法代码解析
Feb 03 #Python
Python下载网络小说实例代码
Feb 03 #Python
JS设计模式之责任链模式实例详解
Feb 03 #Python
numpy使用技巧之数组过滤实例代码
Feb 03 #Python
python验证码识别实例代码
Feb 03 #Python
You might like
模拟flock实现文件锁定
2007/02/14 PHP
PHP 面向对象 PHP5 中的常量
2010/05/05 PHP
解析Linux下Varnish缓存的配置优化
2013/06/20 PHP
Yii框架常见缓存应用实例小结
2019/09/09 PHP
Gambit vs ForZe BO3 第二场 2.13
2021/03/10 DOTA
些很实用且必用的小脚本代码
2006/06/26 Javascript
Javascript 倒计时源代码.(时.分.秒) 详细注释版
2011/05/09 Javascript
jquery属性选择器not has怎么写 行悬停高亮显示
2013/11/13 Javascript
js实现仿MSN带关闭功能的右下角弹窗代码
2015/09/04 Javascript
angularjs学习笔记之三大模块(modal,controller,view)
2015/09/26 Javascript
JavaScript中的操作符类型转换示例总结
2016/05/30 Javascript
Bootstrap选项卡学习笔记分享
2017/02/13 Javascript
js实现可以点击收缩或张开的悬浮窗
2017/09/18 Javascript
微信小程序页面生命周期详解
2018/01/31 Javascript
基于vue-simplemde实现图片拖拽、粘贴功能
2018/04/12 Javascript
小程序实现图片预览裁剪插件
2019/11/22 Javascript
Vue中import from的来源及省略后缀与加载文件夹问题
2020/02/09 Javascript
Python使用gensim计算文档相似性
2016/04/10 Python
使用Python编写一个最基础的代码解释器的要点解析
2016/07/12 Python
对numpy 数组和矩阵的乘法的进一步理解
2018/04/04 Python
一篇文章读懂Python赋值与拷贝
2018/04/19 Python
用python3教你任意Html主内容提取功能
2018/11/05 Python
Python正则表达式实现简易计算器功能示例
2019/05/07 Python
python 下载文件的几种方法汇总
2021/01/06 Python
英国网络托管和域名领导者:Web Hosting UK
2017/10/15 全球购物
斯凯奇澳大利亚官网:SKECHERS澳大利亚
2018/03/31 全球购物
PHP面试题及答案一
2012/06/18 面试题
化学相关工作求职信
2013/10/02 职场文书
竞选演讲稿范文
2013/12/28 职场文书
简历中的自我评价范文
2014/02/05 职场文书
大学生创业计划书
2014/08/14 职场文书
缓刑期间思想汇报范文
2014/10/10 职场文书
考试作弊检讨书
2014/10/21 职场文书
2014年基建工作总结
2014/12/12 职场文书
门球健将观后感
2015/06/16 职场文书
python程序的组织结构详解
2021/12/06 Python