TensorFlow索引与切片的实现方法


Posted in Python onNovember 20, 2019

索引与切片在Tensorflow中使用的频率极其高,可以用来提取部分数据。

1.索引

在 TensorFlow 中,支持基本的[?][?]…标准索引方式,也支持通过逗号分隔索引号的索引方式。

假设创建四张大小为3*3的彩色图片。

# 创建张量
x = tf.random.normal([4, 32, 32, 3])
# 提取出第一张图片
x[0]

<tf.Tensor: id=253, shape=(32, 32, 3), dtype=float32, numpy=
array([[[ 3.16146165e-01, 1.88969020e-02, 1.38413876e-01],
    [ 4.89341050e-01, 2.75277281e+00, 7.39786148e-01],
    [-1.25965345e+00, -2.69633114e-01, -1.16465724e+00],
    ...,


# 提取出第一张图片的第二行
x[0][1]

<tf.Tensor: id=261, shape=(32, 3), dtype=float32, numpy=
array([[ 7.4337220e-01, -1.0524833e+00, -2.6401659e-03],
    [ 5.3725803e-01, -9.5556659e-01, 4.9091709e-01],
    [-4.6934509e-01, 7.9289172e-03, -2.9179385e+00],
    [ 2.9324377e-01, 2.1451252e+00, -3.8849866e-01],
    [ 8.2027388e-01, -4.9701610e-01, -7.3374517e-02],
    ......

# 提取出第一张图片的第二行第三列的像素
x[0][1][2]

<tf.Tensor: id=273, shape=(3,), dtype=float32, numpy=array([-0.4693451 , 0.00792892, -2.9179385 ], dtype=float32)>

# 提取出第一张图片第二行第三列第二个用到(B通道)的颜色强度
x[0][1][2][2]

<tf.Tensor: id=289, shape=(), dtype=float32, numpy=-2.9179385>

当张量的维度数较高时,使用[?][?]. . .[?]的方式书写不方便,可以采用[?,?, … , ?]的方式索引,它们是等价的。

x[1, 9, 2] == x[1][9][2]

<tf.Tensor: id=306, shape=(3,), dtype=bool, numpy=array([ True, True, True])>

2.切片

通过?????: ???: ????切片方式可以方便地提取一段数据,其中 start 为开始读取位置的索引,end 为结束读取位置的索引(不包含 end 位),step 为读取步长。

还是以shape为[4, 32, 32, 3]的图片张量为例。

# 创建张量
x = tf.random.normal([4, 32, 32, 3])
# 读取第二张和第三张图片
x[1:3]

<tf.Tensor: id=344, shape=(2, 32, 32, 3), dtype=float32, numpy=
array([[[[-3.4415385e-01, 5.8418065e-01, 1.8238322e-01],
     [ 5.3377771e-01, 5.8201426e-01, 1.2839563e+00],
     [-1.4592046e+00, -2.3443605e-01, -2.6524603e-01],
     ...,
     [-5.0662726e-01, 6.9743747e-01, -5.8803167e-02],
     [ 1.4200432e+00, -5.0182146e-01, 5.1661726e-02],
     [ 3.5610806e-02, -2.4781477e-01, 1.8222639e-01]],

    [[ 1.3892423e+00, 1.1985755e+00, -6.4732605e-01],
     [ 8.5562867e-01, 1.2758574e+00, 1.7331127e+00],
     [ 9.7743452e-02, -5.3990984e-01, 8.3400911e-01],
     ...,

 start: end: step切片方式有很多简写方式,其中 start、end、step 3 个参数可以根据需要选择性地省略,全部省略时即::,表示从最开始读取到最末尾,步长为 1,即不跳过任何元素。如 x[0,::]表示读取第 1 张图片的所有行,其中::表示在行维度上读取所有行,它等于x[0]的写法。

即x[0, ::]等价于x[0 ]。

为了更加简洁,::可以简写成为单个冒号。

x[:, 0:28:2, 0:28:2, :]

<tf.Tensor: id=344, shape=(2, 32, 32, 3), dtype=float32, numpy=
array([[[[-3.4415385e-01, 5.8418065e-01, 1.8238322e-01],
     [ 5.3377771e-01, 5.8201426e-01, 1.2839563e+00],
     [-1.4592046e+00, -2.3443605e-01, -2.6524603e-01],
     ...,

上述表示取所有图片,隔行采样,隔列采样,采集所有通道信息。相当于在图片的高宽各放缩至原来的一半。

下面是一些常见的切片方式小结:

TensorFlow索引与切片的实现方法

特别地,step可以为负数。例如:step = −1时,start: end: −1表示从 start 开始,逆序读取至 end 结束(不包含 end),索引号??? ≤ ?????。

x = tf.range(9)

# 逆序输出
x[8:0:-1]
<tf.Tensor: id=31, shape=(8,), dtype=int32, numpy=array([8, 7, 6, 5, 4, 3, 2, 1])>

# 逆序取全部元素
x[::-1]
<tf.Tensor: id=35, shape=(9,), dtype=int32, numpy=array([8, 7, 6, 5, 4, 3, 2, 1, 0])>

# 逆序间隔采样
x[::-2]
<tf.Tensor: id=39, shape=(5,), dtype=int32, numpy=array([8, 6, 4, 2, 0])>

当张量的维度数量较多时,不需要采样的维度一般用单冒号:表示采样所有元素。

x = tf.random.normal([4, 32, 32, 3])
# 提取所有图片的G通道
x[:,:,:,1]

<tf.Tensor: id=59, shape=(4, 32, 32), dtype=float32, numpy=
array([[[ 0.5700944 , 0.58056635, 2.2198782 , ..., -0.8475847 ,
     0.49761978, 0.28784937],
    [-0.22224228, 0.77950406, -0.01802959, ..., 0.55532527,
     0.6826188 , 0.50668514],
    [-2.4160695 , -0.96219736, 0.62681717, ..., 1.0348777 ,

为了避免出现像?[: , : , : ,1]这样出现过多冒号的情况,可以使用⋯符号表示取多个维度上所有的数据,其中维度的数量需根据规则自动推断:当切片方式出现⋯符号时,⋯符号左边的维度将自动对齐到最左边,⋯符号右边的维度将自动对齐到最右边,此时系统再自动推断⋯符号代表的维度数量。

TensorFlow索引与切片的实现方法

# 创建四张大小为32*32的彩色图片
x = tf.random.normal([4, 32, 32, 3])
# 读取第一张和第二张图片的G/B通道数据
x[0:2,...,1:]
# 读取最后两张图片
x[2,...]
# 读取所有图片的R/G通道
x[...,:2]

掌握了张量的索引与切片之后,会让我们的书写更加快捷。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python的Django框架中包装视图函数
Jul 20 Python
Python输出各行命令详解
Feb 01 Python
python实现简单登陆流程的方法
Apr 22 Python
python XlsxWriter模块创建aexcel表格的实例讲解
May 03 Python
和孩子一起学习python之变量命名规则
May 27 Python
TensorFlow打印tensor值的实现方法
Jul 27 Python
解决pycharm py文件运行后停止按钮变成了灰色的问题
Nov 29 Python
Python3 使用cookiejar管理cookie的方法
Dec 28 Python
Python基础学习之类与实例基本用法与注意事项详解
Jun 17 Python
python求最大值最小值方法总结
Jun 25 Python
Python @property使用方法解析
Sep 17 Python
python实现扫雷小游戏
Apr 24 Python
50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)
Nov 20 #Python
python中必要的名词解释
Nov 20 #Python
python做接口测试的必要性
Nov 20 #Python
使用NumPy读取MNIST数据的实现代码示例
Nov 20 #Python
Python脚本操作Excel实现批量替换功能
Nov 20 #Python
详解Python中的format格式化函数的使用方法
Nov 20 #Python
Python数据分析pandas模块用法实例详解
Nov 20 #Python
You might like
简单的php 验证图片生成函数
2009/05/21 PHP
PHPMailer邮件发送的实现代码
2013/05/04 PHP
PHP简单实现断点续传下载的方法
2015/09/25 PHP
Laravel使用Caching缓存数据减轻数据库查询压力的方法
2016/03/15 PHP
PHP匿名函数和use子句用法实例
2016/03/16 PHP
php封装的验证码类分享
2017/02/26 PHP
动态加载iframe
2006/06/16 Javascript
农历与西历对照
2006/09/06 Javascript
火狐浏览器(firefox)下获得Event对象以及keyCode
2008/11/13 Javascript
JavaScript Konami Code 实现代码
2009/07/29 Javascript
JavaScript异步调用定时方法并停止该方法实现代码
2012/03/16 Javascript
原生javascript获取元素样式
2014/12/31 Javascript
Bootstrap每天必学之导航条(二)
2016/03/01 Javascript
JavaScript中split与join函数的进阶使用技巧
2016/05/03 Javascript
详解动画插件wow.js的使用方法
2017/09/13 Javascript
vue2.0+SVG实现音乐播放圆形进度条组件
2019/09/21 Javascript
微信小程序连接服务器展示MQTT数据信息的实现
2020/07/14 Javascript
vue组件开发之slider组件使用详解
2020/08/21 Javascript
代码讲解Python对Windows服务进行监控
2018/02/11 Python
python for循环输入一个矩阵的实例
2018/11/14 Python
python时间序列按频率生成日期的方法
2019/05/14 Python
Python函数和模块的使用总结
2019/05/20 Python
Django获取该数据的上一条和下一条方法
2019/08/12 Python
将python依赖包打包成window下可执行文件bat方式
2019/12/26 Python
Python接口自动化测试的实现
2020/08/28 Python
伦敦一家领先的精品零售商:IRIS Fashion
2019/05/24 全球购物
澳大利亚在线性感内衣商店:Fantasy Lingerie
2021/02/07 全球购物
与UNIX有关的几个名词
2015/09/17 面试题
求职简历自荐信范文
2013/10/21 职场文书
优秀管理者事迹材料
2014/05/22 职场文书
小学生环保标语
2014/06/13 职场文书
六查六看个人剖析材料
2014/10/14 职场文书
2014年银行年终工作总结
2014/12/19 职场文书
党员个人总结范文
2015/02/14 职场文书
当你找不到方向的时候,不妨读读刘备的一生
2019/08/05 职场文书
2019年暑期法院实习报告
2019/12/18 职场文书