Python一些基本的图像操作和处理总结


Posted in Python onJune 23, 2021

一、Python图像处理PIL库

1.1 转换图像格式

# PIL(Python Imaging Library)
from PIL import Image
plt.rcParams['font.sans-serif'] = ['SimHei']
# 读取的是图像,cv.imread读取的是array,Image.open()显示的图像是RGB
pil_im=Image.open('pic/kobe_mamba.jpg')

subplot(121),plt.title('原图'),axis('off')
imshow(pil_im)

pil_im_gray=pil_im.convert('L')
subplot(122),plt.title('灰度图'),xticks(x,()),yticks(y,())
imshow(pil_im_gray)

Python一些基本的图像操作和处理总结

# 转换图像格式 PIL中有九种不同模式。分别为1,L,P,RGB,RGBA,CMYK,YCbCr,I,F。
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
plt.rcParams['font.sans-serif'] = ['SimHei']

pil_im=Image.open('pic/apple.jpg')

# 模式1 二值图像

pil_im_binary=pil_im.convert('1')
subplot(231),plt.title('二值图像'),axis('off'),imshow(pil_im_binary)

pil_im_binary.getpixel((10,10))

# 模式2 L = R * 299/1000 + G * 587/1000+ B * 114/1000 灰度模式 0表示黑,255表示白

# 模式3 P模式为8位彩色图像,通过RGB调色

pil_im_p=pil_im.convert('P')

subplot(232),plt.title('调色P图像'),axis('off'),imshow(pil_im_p)

# 模式4 模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit(255)表示alpha通道,255表示不透明。

pil_im_RGBA=pil_im.convert('RGBA')

subplot(233),plt.title('RGBA图像'),axis('off'),imshow(pil_im_RGBA)

# 模式5 CMYK 三原色+黑色,每个像素由32位表示
# C = 255 - R, M = 255 - G, Y = 255 - B, K = 0

pil_im_CMYK=pil_im.convert('CMYK')

subplot(234),plt.title('CMYK图像'),axis('off'),imshow(pil_im_CMYK)

#模式6 YCbcr 24位bit表示 Y= 0.257*R+0.504*G+0.098*B+16 Cb = -0.148*R-0.291*G+0.439*B+128 Cr = 0.439*R-0.368*G-0.071*B+128

pil_im_YCbCr=pil_im.convert('YCbCr')

subplot(235),plt.title('YCbCr图像'),axis('off'),imshow(pil_im_YCbCr)

# 模式7 I模式略 与L模式显示相同 ,只不过是32bit

# 模式8 F模式略 像素保留小数,其余与L模式相同

Python一些基本的图像操作和处理总结

1.2 缩略图

# PIL(Python Imaging Library)
from PIL import Image
from pylab import *
plt.rcParams['font.sans-serif'] = ['SimHei']

pil_im=Image.open('pic/kobe_mamba.jpg')


# 创建缩略图 且可以指定大小

pil_im.thumbnail((120,120))

plt.title('缩略图'),xticks(x,()),yticks([])
imshow(pil_im)

Python一些基本的图像操作和处理总结

1.3 复制、粘贴和旋转、调整尺寸

# 元组坐标分别为(左、上、右、下),从而标出了一块区域,相当于[100:400,100:400]

box=(100,100,400,400)

region=pil_im.crop(box)
# 旋转180度
region=region.transpose(Image.ROTATE_180)

figure(figsize=(5,5))

plt.title('复制区域'),axis('off')


imshow(region)
#粘贴


pil_im=Image.open('pic/kobe_mamba.jpg')

pil_im.paste(region,box)

figure(figsize=(5,5))

plt.title('粘贴后的图像'),axis('off')

imshow(pil_im)

# 调整尺寸和旋转 resize 和 rotate 函数

out=pil_im.resize((128,128))

out=pil_im.rotate(45)

Python一些基本的图像操作和处理总结

第二张图是box旋转了180度再粘贴的结果

二、Matoplotlib库基础学习

# 基本绘图
import numpy as np
import matplotlib.pyplot as plt
from numpy import pi
from pylab import *

x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
figure()
plt.plot(x,z)
plt.show()

两张绘图

Python一些基本的图像操作和处理总结


 
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
plt.plot(x,y)
plt.plot(x,z)

绘图叠加

Python一些基本的图像操作和处理总结

# 曲线颜色、标记、粗细
plot(x, y, color="blue", linewidth=1.0, linestyle=":")
plot(x,z,'--r',linewidth=2.0)

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

# 离散取值
a=np.arange(13)*pi/12
b=cos(3*a)
plot(a,b,'bo',markersize=3)

Python一些基本的图像操作和处理总结

# 离散取值的属性及用虚线相连
a=np.arange(13)*pi/12
b=cos(3*a)
plot(a,b,'--rs',markeredgecolor='y',markerfacecolor='w')

Python一些基本的图像操作和处理总结

# 设置坐标轴的范围和记号
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
xlim(-4,4)
xticks(np.linspace(-4,4,10))
ylim(-1.0,1.0)
yticks(np.linspace(-1.0,1.0,5))
plt.plot(x,y,'--r')

Python一些基本的图像操作和处理总结

# 设置title与坐标轴的一些操作
# 设置中文
matplotlib.rcParams['axes.unicode_minus'] =False
plt.rcParams['font.sans-serif'] = ['SimHei']
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
axis('off')

figure()
plt.plot(x,z)
plt.xticks([])

plt.show()
# 设置title与坐标轴的一些操作
# 设置中文
matplotlib.rcParams['axes.unicode_minus'] =False
plt.rcParams['font.sans-serif'] = ['SimHei']
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
axis('off')

figure()
plt.plot(x,z)
plt.xticks([])

plt.show()

Python一些基本的图像操作和处理总结

#设置坐标轴的标签(多样化)
# xticks(locs, [labels], **kwargs)  # Set locations and labels **kwargs是关键字参数
import calendar

x = range(1,13,1)
y = range(1,13,1)
plt.plot(x,y)
# 标签手动设置('','','',...)亦可
plt.xticks(x, calendar.month_name[1:13],color='m',rotation=45,fontsize=12,fontname='Arial')
plt.show()

Python一些基本的图像操作和处理总结

# 设置图例
matplotlib.rcParams['axes.unicode_minus'] =False

plt.rcParams['font.sans-serif'] = ['SimHei']
a=np.arange(13)*pi/12
b=cos(3*a)
plt.plot(a,b,'--rs',markeredgecolor='y',markerfacecolor='w',label='cos的图像')
xlabel('横轴')
ylabel('纵轴')
plt.legend(loc='upper right')
plt.show()

Python一些基本的图像操作和处理总结

# 子图1
matplotlib.rcParams['axes.unicode_minus'] =False

x=np.linspace(-pi,pi,10)
y,z=np.cos(x),np.sin(x)
fig, (ax1 ,ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ax1.plot(x,y),ax2.plot(x,z)
ax1.set_title('cos'),ax2.set_title('sin')
plt.show()

Python一些基本的图像操作和处理总结

# 子图2
matplotlib.rcParams['axes.unicode_minus'] =False

x=np.linspace(-pi,pi,10)
y,z=np.cos(x),np.sin(x)
figure(figsize=(10,5),dpi=80)
subplot(121),plt.plot(x,y),plt.title('cos')
subplot(122),plt.plot(x,z),plt.title('sin')
plt.show()

Python一些基本的图像操作和处理总结

2.1 绘制实际图像中的点和线

# 使用matplotlib连线
from PIL import Image
from pylab import *

# 读取为列表,以便标记x、y的点?
im=array(Image.open('pic/kobe_mamba.jpg'))

imshow(im)

# 列表 包含四个点坐标
x=[100,100,400,400]
y=[200,500,200,500]

#红色叉型标出
plot(x,y,'rx')


# 连接坐标的前两个点的线 (100,200)与(100,500)
plot(x[:2],y[:2])

show()

Python一些基本的图像操作和处理总结

2.2 图像轮廓与直方图

# contour 与 hist
# 绘制轮廓要将图像先灰度化
from PIL import Image
from pylab import *

im=array(Image.open('pic/kobe_mamba.jpg').convert('L'))
figure()
# 
gray()
# 绘制轮廓,且起始位置从左上角开始
contour(im,origin='image')

# 坐标轴均匀分布
axis('equal')

# 新图像
figure()
hist(im.ravel(),256)

# hist的第二个参数指定小区间的个数,128个,即每个小区间灰度值跨度为2
figure()
hist(im.flatten(),128) 

show()

Python一些基本的图像操作和处理总结

三、Numpy库基本学习

import numpy as np

import math
a=np.array(((1,2,3),(4,5,6)),dtype=float/complex)
a

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

b=np.arange(15).reshape(3,5)
b
# 属性
b.shape
b.ndim
b.dtype
b.size
b.itemsize

Python一些基本的图像操作和处理总结

from numpy import pi
np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
c=np.random.random((2,3))

c.max/min()

Python一些基本的图像操作和处理总结

d=np.arange(12).reshape((3,4))
d.dtype.name
# 每个col的sum
print(d.sum(axis=0))
# 每行的累计和
print(d.cumsum(axis=1))

Python一些基本的图像操作和处理总结

# 转变数组类型
a=np.array(((1,2,3),(4,5,6)),'float32')
a=a.astype('int16')
a

Python一些基本的图像操作和处理总结

# 索引和切片
a = np.arange(10)**3 # 0~9的立方
a[2:5] #a[2-4]
# 令a[0,2,4]为-1000
a[:6:2] = -1000 
# reverse
a[ : :-1]

Python一些基本的图像操作和处理总结

a = np.arange(12).reshape((3,4))
a[0:3,1]
# 第2列
# or
a[:,1]
a[0:1,0:3]

Python一些基本的图像操作和处理总结

# 变换为1维数组
a = np.arange(12).reshape((3,4))
a.ravel()

Python一些基本的图像操作和处理总结

# 变换形状
a = np.arange(12).reshape((3,4))
a.resize((6,2))
a

Python一些基本的图像操作和处理总结

a = np.arange(12).reshape((3,4))
b=10*np.random.random((3,4))
# 竖着叠加
np.vstack((a,b))
# 横着叠加
np.hstack((a,b))

Python一些基本的图像操作和处理总结

x, y = np.ogrid[:3, :4]
# 同样可以设置步长
x, y = np.ogrid[0:3:1, 0:5:2]

# 询问,x>0的部分不变,其余赋值为2
np.where(x>0,x,2)

Python一些基本的图像操作和处理总结

3.1 直方图均衡化

# 解释累加函数
import numpy as np
a=[1,2,3,4,5,6,7]
cdf=np.cumsum(a)

cdf[-1]

cdf=7*cdf/cdf[-1]
cdf

28

Python一些基本的图像操作和处理总结

# 直方图均衡化
# bins 小区间的个数
def histeq(im,bins=256):
    #返回两个参数
    imhist,bins=histogram(im.flatten(),bins)
    # 累计分布函数,相当于cdf是一个列表
    cdf=imhist.cumsum()
    # cdf[-1]是列表的最后一个值,(0,255)
    cdf=255*cdf/cdf[-1]
    # 新的线性插值
    im2=interp(im.flatten(),bins[:-1],cdf)
    # 返回im2图像大小与im相同
    return im2.reshape(im.shape),cdf
# 直方图先转为灰度图
im=array(Image.open('pic/kobe_mamba.jpg').convert('L'))
im2,cdf=histeq(im,256)

figure()
imshow(im2)
figure()
hist(im2.flatten(),256)
show()

Python一些基本的图像操作和处理总结

3.2 图像缩放

#  转换为array
img = np.asarray(image)

# 转换为Image
Image.fromarray(np.uint8(img))

# 图像缩放函数

def imresize(im,sz):
    # 将数组转换为图像
    pil_im=Image.fromarray(np.uint8(im))
    # 图像转换为数组
    return np.array(pil_im.resize(sz))

imshow(imresize(Image.open('pic/kobe_mamba.jpg'),(128,128)))

Python一些基本的图像操作和处理总结

3.3 图像的主成分分析(PCA)

PCA(Principal Component Analysis,主成分分析)是一个非常有用的降维技巧。它可以在使用尽可能少维数的前提下,尽量多地保持训练数据的信息,在此意义上是一个最佳技巧。即使是一幅 100×100 像素的小灰度图像,也有 10 000 维,可以看成 10 000 维空间中的一个点。一兆像素的图像具有百万维。由于图像具有很高的维数,在许多计算机视觉应用中,我们经常使用降维操作。PCA 产生的投影矩阵可以被视为将原始坐标变换到现有的坐标系,坐标系中的各个坐标按照重要性递减排列。

为了对图像数据进行 PCA 变换,图像需要转换成一维向量表示。我们可以使用 NumPy 类库中的flatten() 方法进行变换。
将变平的图像堆积起来,我们可以得到一个矩阵,矩阵的一行表示一幅图像。在计算主方向之前,所有的行图像按照平均图像进行了中心化。我们通常使用 SVD(Singular Value Decomposition,奇异值分解)方法来计算主成分;但当矩阵的维数很大时,SVD 的计算非常慢,所以此时通常不使用 SVD 分解。

from PIL import Image
from numpy import *

def pca(X):
  """ 主成分分析:
    输入:矩阵X ,其中该矩阵中存储训练数据,每一行为一条训练数据
    返回:投影矩阵(按照维度的重要性排序)、方差和均值"""

  # 获取维数
    num_data,dim = X.shape

  # 数据中心化
    mean_X = X.mean(axis=0)
    X = X - mean_X

if dim>num_data:
  # PCA- 使用紧致技巧
  M = dot(X,X.T) # 协方差矩阵
  e,EV = linalg.eigh(M) # 特征值和特征向量
  tmp = dot(X.T,EV).T # 这就是紧致技巧
  V = tmp[::-1] # 由于最后的特征向量是我们所需要的,所以需要将其逆转
  S = sqrt(e)[::-1] # 由于特征值是按照递增顺序排列的,所以需要将其逆转
  for i in range(V.shape[1]):
    V[:,i] /= S
else:
  # PCA- 使用SVD 方法
  U,S,V = linalg.svd(X)
  V = V[:num_data] # 仅仅返回前nun_data 维的数据才合理

# 返回投影矩阵、方差和均值
return V,S,mean_X

四、Scipy

4.1 图像模糊

# 图像模糊
# Scipy 库
from PIL import Image
from numpy import *
from scipy.ndimage import filters

im=array(Image.open('pic/building.tif').convert('L'))
# filters.gaussian_filter第二个参数是标准差
im2=filters.gaussian_filter(im,9)
imshow(im2)

Python一些基本的图像操作和处理总结

from PIL import Image
# 彩色通道,三通道分别进行高斯滤波
im=array(Image.open('pic/landmark500x500.jpg'))
im2=np.zeros((im.shape))
for i in arange(3):
    im2[:,:,i]=filters.gaussian_filter(im[:,:,i],2)
    
# 转换为(0,255),否则imshow显示不出来
im2=uint8(im2)
figure(figsize=(5,5),dpi=80)
imshow(im2)
axis('off')

Python一些基本的图像操作和处理总结

4.2 图像导数

from PIL import Image
from numpy import *
from scipy.ndimage import filters

# filters.sobel(src,0/1,dst),0表示y方向的方向导数,1表示x方向的方向导数

figure()
im=array(Image.open('pic/building.tif'))
imshow(im)


imx=np.zeros(im.shape)

imy=np.zeros(im.shape)
filters.sobel(im,0,imy)
figure()
imx=uint8(imy)
imshow(imy)

figure()
filters.sobel(im,1,imx)
imy=uint8(imx)
imshow(imx)

figure()
mag=sqrt(imx**2+imy**2)
mag=uint8(mag)
imshow(mag)

show()

Python一些基本的图像操作和处理总结

第二/三张图是sobel算子在x/y方向的导数,第四张图是两个导数叠加成梯度。

4.3 形态学计数

# 形态学 对象计数
from scipy.ndimage import measurements,morphology

im=array(Image.open('pic/zhiwen.tif').convert('L'))
im2=np.zeros(im.shape)
im2=1*(im<128)

labels,nbr_objects=measurements.label(im2)

print(f"Number of objects is {nbr_objects}.")

labels=np.uint8(labels)
imshow(labels)

im_open=morphology.binary_opening(im2,ones((3,3)),1)
labels_open,nbr_objects_open=measurements.label(im_open)
print(f"Number of objects is {nbr_objects_open}.")

imshow(labels_open)

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

形态学计数使用label()函数,令图像的灰度值为标签,图一找到了114个物体,图二经过开操作,找到了17个物体。

到此这篇关于Python一些基本的图像操作和处理总结的文章就介绍到这了,更多相关Python图像操作和处理内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现监控linux性能及进程消耗性能的方法
Jul 25 Python
利用aardio给python编写图形界面
Aug 21 Python
Python三种遍历文件目录的方法实例代码
Jan 19 Python
详解python字节码
Feb 07 Python
python pyheatmap包绘制热力图
Nov 09 Python
python opencv minAreaRect 生成最小外接矩形的方法
Jul 01 Python
python获取txt文件词向量过程详解
Jul 05 Python
python打印异常信息的两种实现方式
Dec 24 Python
python实现udp聊天窗口
Mar 31 Python
Python3爬虫里关于识别微博宫格验证码的知识点详解
Jul 30 Python
使用Python判断一个文件是否被占用的方法教程
Dec 16 Python
Python 文本滚动播放器的实现代码
Apr 25 Python
Python使用openpyxl批量处理数据
浅谈Python实现opencv之图片色素的数值运算和逻辑运算
opencv-python图像配准(匹配和叠加)的实现
Python初学者必备的文件读写指南
Jun 23 #Python
总结Python连接CS2000的详细步骤
python图片灰度化处理的几种方法
详解Python中的进程和线程
You might like
新版mysql+apache+php Linux安装指南
2006/10/09 PHP
php5 mysql分页实例代码
2008/04/10 PHP
php制作动态随机验证码
2015/02/12 PHP
百度工程师讲PHP函数的实现原理及性能分析(三)
2015/05/13 PHP
基于ThinkPHP5.0实现图片上传插件
2017/09/25 PHP
Nigma vs Liquid BO3 第二场2.14
2021/03/10 DOTA
javascript判断用户浏览器插件安装情况的代码
2011/01/01 Javascript
基于jQuery实现下拉收缩(展开与折叠)特效
2012/12/25 Javascript
js比较和逻辑运算符的介绍
2013/03/10 Javascript
Extjs 继承Ext.data.Store不起作用原因分析及解决
2013/04/15 Javascript
关于删除时的提示处理(确定删除吗)
2013/11/03 Javascript
点击标签切换和自动切换DIV选项卡
2014/08/10 Javascript
JS解析XML实例分析
2015/01/30 Javascript
JavaScript DOM事件(笔记)
2015/04/08 Javascript
js 实现数值的千分位及保存小数方法(推荐)
2016/08/01 Javascript
jQuery实现简洁的轮播图效果实例
2016/09/07 Javascript
jQuery插件WebUploader实现文件上传
2016/11/07 Javascript
如何使用Bootstrap创建表单
2017/03/29 Javascript
BootStrap表单时间选择器详解
2017/05/09 Javascript
zookeeper python接口实例详解
2018/01/18 Python
Python3对称加密算法AES、DES3实例详解
2018/12/06 Python
Django model update的多种用法介绍
2020/03/28 Python
Python 解析pymysql模块操作数据库的方法
2020/02/18 Python
Python多线程threading join和守护线程setDeamon原理详解
2020/03/18 Python
使用Python内置模块与函数进行不同进制的数的转换
2020/04/26 Python
Python的信号库Blinker用法详解
2020/12/31 Python
iframe与window.onload如何使用详解
2020/05/07 HTML / CSS
Bobbi Brown芭比波朗美国官网:化妆师专业彩妆保养品品牌
2016/08/18 全球购物
美国牛仔品牌:True Religion
2018/11/16 全球购物
党的群众路线教育实践活动宣传方案
2014/02/23 职场文书
社区食品安全实施方案
2014/03/28 职场文书
优质服务活动实施方案
2014/05/02 职场文书
2014年街道办事处工作总结
2014/12/11 职场文书
孕妇病假条怎么写
2015/08/17 职场文书
2015年党风廉政建设个人总结
2015/08/18 职场文书
个人工作总结(管理人员)范文
2019/08/13 职场文书