Python一些基本的图像操作和处理总结


Posted in Python onJune 23, 2021

一、Python图像处理PIL库

1.1 转换图像格式

# PIL(Python Imaging Library)
from PIL import Image
plt.rcParams['font.sans-serif'] = ['SimHei']
# 读取的是图像,cv.imread读取的是array,Image.open()显示的图像是RGB
pil_im=Image.open('pic/kobe_mamba.jpg')

subplot(121),plt.title('原图'),axis('off')
imshow(pil_im)

pil_im_gray=pil_im.convert('L')
subplot(122),plt.title('灰度图'),xticks(x,()),yticks(y,())
imshow(pil_im_gray)

Python一些基本的图像操作和处理总结

# 转换图像格式 PIL中有九种不同模式。分别为1,L,P,RGB,RGBA,CMYK,YCbCr,I,F。
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
plt.rcParams['font.sans-serif'] = ['SimHei']

pil_im=Image.open('pic/apple.jpg')

# 模式1 二值图像

pil_im_binary=pil_im.convert('1')
subplot(231),plt.title('二值图像'),axis('off'),imshow(pil_im_binary)

pil_im_binary.getpixel((10,10))

# 模式2 L = R * 299/1000 + G * 587/1000+ B * 114/1000 灰度模式 0表示黑,255表示白

# 模式3 P模式为8位彩色图像,通过RGB调色

pil_im_p=pil_im.convert('P')

subplot(232),plt.title('调色P图像'),axis('off'),imshow(pil_im_p)

# 模式4 模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit(255)表示alpha通道,255表示不透明。

pil_im_RGBA=pil_im.convert('RGBA')

subplot(233),plt.title('RGBA图像'),axis('off'),imshow(pil_im_RGBA)

# 模式5 CMYK 三原色+黑色,每个像素由32位表示
# C = 255 - R, M = 255 - G, Y = 255 - B, K = 0

pil_im_CMYK=pil_im.convert('CMYK')

subplot(234),plt.title('CMYK图像'),axis('off'),imshow(pil_im_CMYK)

#模式6 YCbcr 24位bit表示 Y= 0.257*R+0.504*G+0.098*B+16 Cb = -0.148*R-0.291*G+0.439*B+128 Cr = 0.439*R-0.368*G-0.071*B+128

pil_im_YCbCr=pil_im.convert('YCbCr')

subplot(235),plt.title('YCbCr图像'),axis('off'),imshow(pil_im_YCbCr)

# 模式7 I模式略 与L模式显示相同 ,只不过是32bit

# 模式8 F模式略 像素保留小数,其余与L模式相同

Python一些基本的图像操作和处理总结

1.2 缩略图

# PIL(Python Imaging Library)
from PIL import Image
from pylab import *
plt.rcParams['font.sans-serif'] = ['SimHei']

pil_im=Image.open('pic/kobe_mamba.jpg')


# 创建缩略图 且可以指定大小

pil_im.thumbnail((120,120))

plt.title('缩略图'),xticks(x,()),yticks([])
imshow(pil_im)

Python一些基本的图像操作和处理总结

1.3 复制、粘贴和旋转、调整尺寸

# 元组坐标分别为(左、上、右、下),从而标出了一块区域,相当于[100:400,100:400]

box=(100,100,400,400)

region=pil_im.crop(box)
# 旋转180度
region=region.transpose(Image.ROTATE_180)

figure(figsize=(5,5))

plt.title('复制区域'),axis('off')


imshow(region)
#粘贴


pil_im=Image.open('pic/kobe_mamba.jpg')

pil_im.paste(region,box)

figure(figsize=(5,5))

plt.title('粘贴后的图像'),axis('off')

imshow(pil_im)

# 调整尺寸和旋转 resize 和 rotate 函数

out=pil_im.resize((128,128))

out=pil_im.rotate(45)

Python一些基本的图像操作和处理总结

第二张图是box旋转了180度再粘贴的结果

二、Matoplotlib库基础学习

# 基本绘图
import numpy as np
import matplotlib.pyplot as plt
from numpy import pi
from pylab import *

x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
figure()
plt.plot(x,z)
plt.show()

两张绘图

Python一些基本的图像操作和处理总结


 
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
plt.plot(x,y)
plt.plot(x,z)

绘图叠加

Python一些基本的图像操作和处理总结

# 曲线颜色、标记、粗细
plot(x, y, color="blue", linewidth=1.0, linestyle=":")
plot(x,z,'--r',linewidth=2.0)

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

# 离散取值
a=np.arange(13)*pi/12
b=cos(3*a)
plot(a,b,'bo',markersize=3)

Python一些基本的图像操作和处理总结

# 离散取值的属性及用虚线相连
a=np.arange(13)*pi/12
b=cos(3*a)
plot(a,b,'--rs',markeredgecolor='y',markerfacecolor='w')

Python一些基本的图像操作和处理总结

# 设置坐标轴的范围和记号
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
xlim(-4,4)
xticks(np.linspace(-4,4,10))
ylim(-1.0,1.0)
yticks(np.linspace(-1.0,1.0,5))
plt.plot(x,y,'--r')

Python一些基本的图像操作和处理总结

# 设置title与坐标轴的一些操作
# 设置中文
matplotlib.rcParams['axes.unicode_minus'] =False
plt.rcParams['font.sans-serif'] = ['SimHei']
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
axis('off')

figure()
plt.plot(x,z)
plt.xticks([])

plt.show()
# 设置title与坐标轴的一些操作
# 设置中文
matplotlib.rcParams['axes.unicode_minus'] =False
plt.rcParams['font.sans-serif'] = ['SimHei']
x=np.linspace(-pi,pi,256)
y,z=np.cos(x),np.sin(x)
figure()
plt.plot(x,y)
axis('off')

figure()
plt.plot(x,z)
plt.xticks([])

plt.show()

Python一些基本的图像操作和处理总结

#设置坐标轴的标签(多样化)
# xticks(locs, [labels], **kwargs)  # Set locations and labels **kwargs是关键字参数
import calendar

x = range(1,13,1)
y = range(1,13,1)
plt.plot(x,y)
# 标签手动设置('','','',...)亦可
plt.xticks(x, calendar.month_name[1:13],color='m',rotation=45,fontsize=12,fontname='Arial')
plt.show()

Python一些基本的图像操作和处理总结

# 设置图例
matplotlib.rcParams['axes.unicode_minus'] =False

plt.rcParams['font.sans-serif'] = ['SimHei']
a=np.arange(13)*pi/12
b=cos(3*a)
plt.plot(a,b,'--rs',markeredgecolor='y',markerfacecolor='w',label='cos的图像')
xlabel('横轴')
ylabel('纵轴')
plt.legend(loc='upper right')
plt.show()

Python一些基本的图像操作和处理总结

# 子图1
matplotlib.rcParams['axes.unicode_minus'] =False

x=np.linspace(-pi,pi,10)
y,z=np.cos(x),np.sin(x)
fig, (ax1 ,ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ax1.plot(x,y),ax2.plot(x,z)
ax1.set_title('cos'),ax2.set_title('sin')
plt.show()

Python一些基本的图像操作和处理总结

# 子图2
matplotlib.rcParams['axes.unicode_minus'] =False

x=np.linspace(-pi,pi,10)
y,z=np.cos(x),np.sin(x)
figure(figsize=(10,5),dpi=80)
subplot(121),plt.plot(x,y),plt.title('cos')
subplot(122),plt.plot(x,z),plt.title('sin')
plt.show()

Python一些基本的图像操作和处理总结

2.1 绘制实际图像中的点和线

# 使用matplotlib连线
from PIL import Image
from pylab import *

# 读取为列表,以便标记x、y的点?
im=array(Image.open('pic/kobe_mamba.jpg'))

imshow(im)

# 列表 包含四个点坐标
x=[100,100,400,400]
y=[200,500,200,500]

#红色叉型标出
plot(x,y,'rx')


# 连接坐标的前两个点的线 (100,200)与(100,500)
plot(x[:2],y[:2])

show()

Python一些基本的图像操作和处理总结

2.2 图像轮廓与直方图

# contour 与 hist
# 绘制轮廓要将图像先灰度化
from PIL import Image
from pylab import *

im=array(Image.open('pic/kobe_mamba.jpg').convert('L'))
figure()
# 
gray()
# 绘制轮廓,且起始位置从左上角开始
contour(im,origin='image')

# 坐标轴均匀分布
axis('equal')

# 新图像
figure()
hist(im.ravel(),256)

# hist的第二个参数指定小区间的个数,128个,即每个小区间灰度值跨度为2
figure()
hist(im.flatten(),128) 

show()

Python一些基本的图像操作和处理总结

三、Numpy库基本学习

import numpy as np

import math
a=np.array(((1,2,3),(4,5,6)),dtype=float/complex)
a

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

b=np.arange(15).reshape(3,5)
b
# 属性
b.shape
b.ndim
b.dtype
b.size
b.itemsize

Python一些基本的图像操作和处理总结

from numpy import pi
np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
c=np.random.random((2,3))

c.max/min()

Python一些基本的图像操作和处理总结

d=np.arange(12).reshape((3,4))
d.dtype.name
# 每个col的sum
print(d.sum(axis=0))
# 每行的累计和
print(d.cumsum(axis=1))

Python一些基本的图像操作和处理总结

# 转变数组类型
a=np.array(((1,2,3),(4,5,6)),'float32')
a=a.astype('int16')
a

Python一些基本的图像操作和处理总结

# 索引和切片
a = np.arange(10)**3 # 0~9的立方
a[2:5] #a[2-4]
# 令a[0,2,4]为-1000
a[:6:2] = -1000 
# reverse
a[ : :-1]

Python一些基本的图像操作和处理总结

a = np.arange(12).reshape((3,4))
a[0:3,1]
# 第2列
# or
a[:,1]
a[0:1,0:3]

Python一些基本的图像操作和处理总结

# 变换为1维数组
a = np.arange(12).reshape((3,4))
a.ravel()

Python一些基本的图像操作和处理总结

# 变换形状
a = np.arange(12).reshape((3,4))
a.resize((6,2))
a

Python一些基本的图像操作和处理总结

a = np.arange(12).reshape((3,4))
b=10*np.random.random((3,4))
# 竖着叠加
np.vstack((a,b))
# 横着叠加
np.hstack((a,b))

Python一些基本的图像操作和处理总结

x, y = np.ogrid[:3, :4]
# 同样可以设置步长
x, y = np.ogrid[0:3:1, 0:5:2]

# 询问,x>0的部分不变,其余赋值为2
np.where(x>0,x,2)

Python一些基本的图像操作和处理总结

3.1 直方图均衡化

# 解释累加函数
import numpy as np
a=[1,2,3,4,5,6,7]
cdf=np.cumsum(a)

cdf[-1]

cdf=7*cdf/cdf[-1]
cdf

28

Python一些基本的图像操作和处理总结

# 直方图均衡化
# bins 小区间的个数
def histeq(im,bins=256):
    #返回两个参数
    imhist,bins=histogram(im.flatten(),bins)
    # 累计分布函数,相当于cdf是一个列表
    cdf=imhist.cumsum()
    # cdf[-1]是列表的最后一个值,(0,255)
    cdf=255*cdf/cdf[-1]
    # 新的线性插值
    im2=interp(im.flatten(),bins[:-1],cdf)
    # 返回im2图像大小与im相同
    return im2.reshape(im.shape),cdf
# 直方图先转为灰度图
im=array(Image.open('pic/kobe_mamba.jpg').convert('L'))
im2,cdf=histeq(im,256)

figure()
imshow(im2)
figure()
hist(im2.flatten(),256)
show()

Python一些基本的图像操作和处理总结

3.2 图像缩放

#  转换为array
img = np.asarray(image)

# 转换为Image
Image.fromarray(np.uint8(img))

# 图像缩放函数

def imresize(im,sz):
    # 将数组转换为图像
    pil_im=Image.fromarray(np.uint8(im))
    # 图像转换为数组
    return np.array(pil_im.resize(sz))

imshow(imresize(Image.open('pic/kobe_mamba.jpg'),(128,128)))

Python一些基本的图像操作和处理总结

3.3 图像的主成分分析(PCA)

PCA(Principal Component Analysis,主成分分析)是一个非常有用的降维技巧。它可以在使用尽可能少维数的前提下,尽量多地保持训练数据的信息,在此意义上是一个最佳技巧。即使是一幅 100×100 像素的小灰度图像,也有 10 000 维,可以看成 10 000 维空间中的一个点。一兆像素的图像具有百万维。由于图像具有很高的维数,在许多计算机视觉应用中,我们经常使用降维操作。PCA 产生的投影矩阵可以被视为将原始坐标变换到现有的坐标系,坐标系中的各个坐标按照重要性递减排列。

为了对图像数据进行 PCA 变换,图像需要转换成一维向量表示。我们可以使用 NumPy 类库中的flatten() 方法进行变换。
将变平的图像堆积起来,我们可以得到一个矩阵,矩阵的一行表示一幅图像。在计算主方向之前,所有的行图像按照平均图像进行了中心化。我们通常使用 SVD(Singular Value Decomposition,奇异值分解)方法来计算主成分;但当矩阵的维数很大时,SVD 的计算非常慢,所以此时通常不使用 SVD 分解。

from PIL import Image
from numpy import *

def pca(X):
  """ 主成分分析:
    输入:矩阵X ,其中该矩阵中存储训练数据,每一行为一条训练数据
    返回:投影矩阵(按照维度的重要性排序)、方差和均值"""

  # 获取维数
    num_data,dim = X.shape

  # 数据中心化
    mean_X = X.mean(axis=0)
    X = X - mean_X

if dim>num_data:
  # PCA- 使用紧致技巧
  M = dot(X,X.T) # 协方差矩阵
  e,EV = linalg.eigh(M) # 特征值和特征向量
  tmp = dot(X.T,EV).T # 这就是紧致技巧
  V = tmp[::-1] # 由于最后的特征向量是我们所需要的,所以需要将其逆转
  S = sqrt(e)[::-1] # 由于特征值是按照递增顺序排列的,所以需要将其逆转
  for i in range(V.shape[1]):
    V[:,i] /= S
else:
  # PCA- 使用SVD 方法
  U,S,V = linalg.svd(X)
  V = V[:num_data] # 仅仅返回前nun_data 维的数据才合理

# 返回投影矩阵、方差和均值
return V,S,mean_X

四、Scipy

4.1 图像模糊

# 图像模糊
# Scipy 库
from PIL import Image
from numpy import *
from scipy.ndimage import filters

im=array(Image.open('pic/building.tif').convert('L'))
# filters.gaussian_filter第二个参数是标准差
im2=filters.gaussian_filter(im,9)
imshow(im2)

Python一些基本的图像操作和处理总结

from PIL import Image
# 彩色通道,三通道分别进行高斯滤波
im=array(Image.open('pic/landmark500x500.jpg'))
im2=np.zeros((im.shape))
for i in arange(3):
    im2[:,:,i]=filters.gaussian_filter(im[:,:,i],2)
    
# 转换为(0,255),否则imshow显示不出来
im2=uint8(im2)
figure(figsize=(5,5),dpi=80)
imshow(im2)
axis('off')

Python一些基本的图像操作和处理总结

4.2 图像导数

from PIL import Image
from numpy import *
from scipy.ndimage import filters

# filters.sobel(src,0/1,dst),0表示y方向的方向导数,1表示x方向的方向导数

figure()
im=array(Image.open('pic/building.tif'))
imshow(im)


imx=np.zeros(im.shape)

imy=np.zeros(im.shape)
filters.sobel(im,0,imy)
figure()
imx=uint8(imy)
imshow(imy)

figure()
filters.sobel(im,1,imx)
imy=uint8(imx)
imshow(imx)

figure()
mag=sqrt(imx**2+imy**2)
mag=uint8(mag)
imshow(mag)

show()

Python一些基本的图像操作和处理总结

第二/三张图是sobel算子在x/y方向的导数,第四张图是两个导数叠加成梯度。

4.3 形态学计数

# 形态学 对象计数
from scipy.ndimage import measurements,morphology

im=array(Image.open('pic/zhiwen.tif').convert('L'))
im2=np.zeros(im.shape)
im2=1*(im<128)

labels,nbr_objects=measurements.label(im2)

print(f"Number of objects is {nbr_objects}.")

labels=np.uint8(labels)
imshow(labels)

im_open=morphology.binary_opening(im2,ones((3,3)),1)
labels_open,nbr_objects_open=measurements.label(im_open)
print(f"Number of objects is {nbr_objects_open}.")

imshow(labels_open)

Python一些基本的图像操作和处理总结
Python一些基本的图像操作和处理总结

形态学计数使用label()函数,令图像的灰度值为标签,图一找到了114个物体,图二经过开操作,找到了17个物体。

到此这篇关于Python一些基本的图像操作和处理总结的文章就介绍到这了,更多相关Python图像操作和处理内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现博客文章爬虫示例
Feb 26 Python
python版本的读写锁操作方法
Apr 25 Python
Python中的上下文管理器和with语句的使用
Apr 17 Python
python求解数组中两个字符串的最小距离
Sep 27 Python
python八皇后问题的解决方法
Sep 27 Python
pthon贪吃蛇游戏详细代码
Jan 27 Python
python操作kafka实践的示例代码
Jun 19 Python
Python一键安装全部依赖包的方法
Aug 12 Python
Python彻底删除文件夹及其子文件方式
Dec 23 Python
Python常用模块sys,os,time,random功能与用法实例分析
Jan 07 Python
python argparse模块通过后台传递参数实例
Apr 20 Python
Django:使用filter的pk进行多值查询操作
Jul 15 Python
Python使用openpyxl批量处理数据
浅谈Python实现opencv之图片色素的数值运算和逻辑运算
opencv-python图像配准(匹配和叠加)的实现
Python初学者必备的文件读写指南
Jun 23 #Python
总结Python连接CS2000的详细步骤
python图片灰度化处理的几种方法
详解Python中的进程和线程
You might like
PHP fopen()和 file_get_contents()应用与差异介绍
2014/03/19 PHP
PHP错误Cannot use object of type stdClass as array in错误的解决办法
2014/06/12 PHP
php多重接口的实现方法
2015/06/20 PHP
PHP实现搜索时记住状态的方法示例
2018/05/11 PHP
Javascript Object.extend
2010/05/18 Javascript
Mootools 图片展示插件(lightbox,ImageMenu)收集集合
2010/05/21 Javascript
不同浏览器的怪癖小结
2010/07/11 Javascript
Jquery实现搜索框提示功能示例代码
2013/08/13 Javascript
ajax与302响应代码测试
2013/10/23 Javascript
为什么Node.js会这么火呢?Node.js流行的原因
2014/12/01 Javascript
基于jQuery实现美观且实用的倒计时实例代码
2015/12/30 Javascript
js修改onclick动作的四种方法(推荐)
2016/08/18 Javascript
jquery实现全选、不选、反选的两种方法
2016/09/06 Javascript
JS实现表单验证功能(验证手机号是否存在,验证码倒计时)
2016/10/11 Javascript
Jquery通过ajax请求NodeJS返回json数据实例
2016/11/08 NodeJs
详解在React.js中使用PureComponent的重要性和使用方式
2018/07/10 Javascript
Javascript的this详解
2019/03/23 Javascript
详解小程序input框失焦事件在提交事件前的处理
2019/05/05 Javascript
vue 解决异步数据更新问题
2019/10/29 Javascript
JS中比较两个Object数组是否相等方法实例
2019/11/11 Javascript
详解Vue串联过滤器的使用场景
2020/04/30 Javascript
微信小程序实现音乐播放页面布局
2020/12/11 Javascript
使用beaker让Facebook的Bottle框架支持session功能
2015/04/23 Python
好用的Python编辑器WingIDE的使用经验总结
2016/08/31 Python
Python爬取APP下载链接的实现方法
2016/09/30 Python
python的mysqldb安装步骤详解
2017/08/14 Python
python 在屏幕上逐字显示一行字的实例
2018/12/24 Python
python用TensorFlow做图像识别的实现
2020/04/21 Python
英国景点门票网站:attractiontix
2019/08/27 全球购物
几个SQL的面试题
2014/03/08 面试题
副处级干部考察材料
2014/05/17 职场文书
整改通知书
2015/04/20 职场文书
小学教师党员承诺书
2015/04/27 职场文书
企业年会祝酒词
2015/08/11 职场文书
微信小程序APP的事件绑定以及传递参数时的冒泡和捕获
2022/04/19 Javascript
CentOS7设置ssh服务以及端口修改方式
2022/12/24 Servers