Posted in Python onMay 18, 2018
例表:
假如想要去掉表中的‘#',‘;'而且以‘#'和‘;'为分割线切割数据:
#将dfxA_2的每一个分隔符之间的数据提出来 col1=dfxA_2['travel_seq'].str.split('#').str[0] col2=dfxA_2['travel_seq'].str.split('#').str[1] col3=dfxA_2['travel_seq'].str.split('#').str[2].str.split(';').str[0]
这里只是部分代码,实际情况按需求可以灵活变化。
#建立表 DF1=pd.DataFrame({'link_id1':col1,'time_slot1':col2,'time1':col3,'link_id2':col4,'time_slot2':col5,'time2':col6,'link_id3':col7,'time_slot3':col8,'time3':col9,'link_id4':col10,'time_slot4':col11,'time4':col12,'link_id5':col13,'time_slot5':col14,'time5':col15,'link_id6':col16,'time_slot6':col17,'time6':col18,'all_time':col19}) #重新排列index的值 DF2=DF1.reset_index(drop=True) #按照指定的列排序columns DF=DF2.reindex(columns=['link_id1','time_slot1','time1','link_id2','time_slot2','time2','link_id3','time_slot3','time3','link_id4','time_slot4','time4','link_id5','time_slot5','time5','link_id6','time_slot6','time6','all_time']) #保存成csv格式的文档 DF.to_csv('A_2.csv')
结果:
以上这篇pandas中去除指定字符的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pandas中去除指定字符的实例
- Author -
Pywin声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@