pandas数据清洗,排序,索引设置,数据选取方法


Posted in Python onMay 18, 2018

此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释

Pandas数据格式

Series

DataFrame:每个column就是一个Series

基础属性shape,index,columns,values,dtypes,describe(),head(),tail()

统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数

df.isnull() df的空值为True

df.notnull() df的非空值为True

修改列名

df.rename(columns = {'key':'key2'},inplace=True)

更改数据格式astype()

isin     #计算一个“Series各值是否包含传入的值序列中”的布尔数组
unique    #返回唯一值的数组
value_counts   #返回一个Series,其索引为唯一值,值为频率,按计数降序排列

数据清洗

丢弃值drop()

df.drop(labels, axis=1)# 按列(axis=1),丢弃指定label的列,默认按行。。。

丢弃缺失值dropna()

# 默认axi=0(行);1(列),how=‘any'
df.dropna()#每行只要有空值,就将这行删除
df.dropna(axis=1)#每列只要有空值,整列丢弃
df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行
df.dropna(thresh=3)# 每行至少3个非空值才保留

缺失值填充fillna()

df.fillna(0)
df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN

值替换replace()

# 将df的A列中 -999 全部替换成空值
df['A'].replace(-999, np.nan)
#-999和1000 均替换成空值
obj.replace([-999,1000], np.nan)
# -999替换成空值,1000替换成0
obj.replace([-999,1000], [np.nan, 0])
# 同上,写法不同,更清晰
obj.replace({-999:np.nan, 1000:0})

重复值处理duplicated(),unique(),drop_duplictad()

df.duplicated()#两行每列完全一样才算重复,后面重复的为True,第一个和不重复的为false,返回true
    #和false组成的Series类型
df.duplicated('key')#两行key这一列一样就算重复

df['A'].unique()# 返回唯一值的数组(类型为array)

df.drop_duplicates(['k1'])# 保留k1列中的唯一值的行,默认保留第一行
df.drop_duplicates(['k1','k2'], take_last=True)# 保留 k1和k2 组合的唯一值的行,take_last=True 保留最后一行

排序

索引排序

# 默认axis=0,按行索引对行进行排序;ascending=True,升序排序
df.sort_index()
# 按列名对列进行排序,ascending=False 降序
df.sort_index(axis=1, ascending=False)

值排序

# 按值对Series进行排序,使用order(),默认空值会置于尾部
s = pd.Series([4, 6, np.nan, 2, np.nan])
s.order()

df.sort_values(by=['a','b'])#按列进行排序

排名

a=Series([7,-5,7,4,2,0,4])
a.rank()#默认method='average',升序排名(ascending=True),按行(axis=0)
#average 值相等时,取排名的平均值
#min 值相等时,取排名最小值
#max 值相等时,取排名最大值
#first值相等时,按原始数据出现顺序排名

索引设置

reindex()

更新index或者columns,

默认:更新index,返回一个新的DataFrame

# 返回一个新的DataFrame,更新index,原来的index会被替代消失
# 如果dataframe中某个索引值不存在,会自动补上NaN
df2 = df1.reindex(['a','b','c','d','e'])

# fill_valuse为原先不存在的索引补上默认值,不在是NaN
df2 = df1.reindex(['a','b','c','d','e'], fill_value=0)

# inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame
df1.reindex(['a','b','c','d','e'], inplace=Ture)

# reindex不仅可以修改 索引(行),也可以修改列
states = ["Texas","Utah","California"]
df2 = df1.reindex( columns=states )

set_index()

将DataFrame中的列columns设置成索引index

打造层次化索引的方法

# 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级
# inplace=True 在原数据集上修改的
adult.set_index(['race','sex'], inplace = True) 

# 默认情况下,设置成索引的列会从DataFrame中移除
# drop=False将其保留下来
adult.set_index(['race','sex'], inplace = True)

reset_index()

将使用set_index()打造的层次化逆向操作

既是取消层次化索引,将索引变回列,并补上最常规的数字索引

df.reset_index()

数据选取

[]

只能对行进 行(row/index) 切片,前闭后开df[0:3],df[:4],df[4:]

where 布尔查找

df[df["A"]>7]

isin

# 返回布尔值
s.isin([1,2,3])
df['A'].isin([1,2,3])
df.loc[df['A'].isin([5.8,5.1])]选取列A中值为5.8,5.1的所有行组成dataframe

query

多个where整合切片,&:于,|:或 

df.query(" A>5.0 & (B>3.5 | C<1.0) ") 

loc :根据名称Label切片

# df.loc[A,B] A是行范围,B是列范围
df.loc[1:4,['petal_length','petal_width']]

# 需求1:创建一个新的变量 test
# 如果sepal_length > 3 test = 1 否则 test = 0
df.loc[df['sepal_length'] > 6, 'test'] = 1
df.loc[df['sepal_length'] <=6, 'test'] = 0

# 需求2:创建一个新变量test2 
# 1.petal_length>2 and petal_width>0.3 = 1 
# 2.sepeal_length>6 and sepal_width>3 = 2 3.其他 = 0
df['test2'] = 0
df.loc[(df['petal_length']>2)&(df['petal_width']>0.3), 'test2'] = 1
df.loc[(df['sepal_length']>6)&(df['sepal_width']>3), 'test2'] = 2

iloc:切位置

df.iloc[1:4,:]

ix:混切

名称和位置混切,但效率低,少用

df1.ix[0:3,['sepal_length','petal_width']]

map与lambda

alist = [1,2,3,4]
map(lambda s : s+1, alist)#map就是将自定义函数应用于Series每个元素

df['sepal_length'].map(lambda s:s*2+1)[0:3]

apply和applymap

apply和applymap是对dataframe的操作,前者操作一行或者一列,后者操作每个元素

These are techniques to apply function to element, column or dataframe.

Map: It iterates over each element of a series. 
df[‘column1'].map(lambda x: 10+x), this will add 10 to each element of column1.
df[‘column2'].map(lambda x: ‘AV'+x), this will concatenate “AV“ at the beginning of each element of column2 (column format is string).

Apply: As the name suggests, applies a function along any axis of the DataFrame.
df[[‘column1','column2']].apply(sum), it will returns the sum of all the values of column1 and column2.
df0[['data1']].apply(lambda s:s+1)

ApplyMap: 对dataframe的每一个元素施加一个函数
func = lambda x: x+2
df.applymap(func), dataframe每个元素加2 (所有列必须数字类型)

contains

# 使用DataFrame模糊筛选数据(类似SQL中的LIKE)
# 使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] 

# 下面两句效果一致
df[df['商品名称'].str.contains("四件套")]
df[df['商品名称'].str.contains(r".*四件套.*")]

以上这篇pandas数据清洗,排序,索引设置,数据选取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Django中Request对象的相关用法
Jul 17 Python
Ruby使用eventmachine为HTTP服务器添加文件下载功能
Apr 20 Python
Python轻量级ORM框架Peewee访问sqlite数据库的方法详解
Jul 20 Python
python itchat实现微信好友头像拼接图的示例代码
Aug 14 Python
Python下载网络小说实例代码
Feb 03 Python
python基础教程项目四之新闻聚合
Apr 02 Python
python opencv将图片转为灰度图的方法示例
Jul 31 Python
python requests库爬取豆瓣电视剧数据并保存到本地详解
Aug 10 Python
python爬取”顶点小说网“《纯阳剑尊》的示例代码
Oct 16 Python
python 用Matplotlib作图中有多个Y轴
Nov 28 Python
Python入门基础之数字字符串与列表
Feb 01 Python
Python绘制散点图之可视化神器pyecharts
Jul 07 Python
对pandas replace函数的使用方法小结
May 18 #Python
基于DataFrame筛选数据与loc的用法详解
May 18 #Python
pandas DataFrame 根据多列的值做判断,生成新的列值实例
May 18 #Python
pandas.loc 选取指定列进行操作的实例
May 18 #Python
解决Pycharm中import时无法识别自己写的程序方法
May 18 #Python
解决pycharm无法调用pip安装的包问题
May 18 #Python
解决已经安装requests,却依然提示No module named requests问题
May 18 #Python
You might like
用PHP发电子邮件
2006/10/09 PHP
php自定义函数之递归删除文件及目录
2010/08/08 PHP
PHP中字符安全过滤函数使用小结
2015/02/25 PHP
php ucwords() 函数将字符串中每个单词的首字符转换为大写(实现代码)
2016/05/12 PHP
Javascript 日期对象Date扩展方法
2009/05/30 Javascript
Javascript继承机制的设计思想分享
2011/08/28 Javascript
js与jquery获取父级元素,子级元素,兄弟元素的实现方法
2014/01/09 Javascript
JavaScript中的数学运算介绍
2014/12/29 Javascript
jQuery实现监控页面所有ajax请求的方法
2015/12/10 Javascript
jquery操作ID带有变量的节点实例
2016/12/07 Javascript
vue使用微信JS-SDK实现分享功能
2019/08/23 Javascript
用原生JS实现爱奇艺首页导航栏代码实例
2019/09/19 Javascript
通过实例解析js可枚举属性与不可枚举属性
2020/12/02 Javascript
简明 Python 基础学习教程
2007/02/08 Python
Django中的“惰性翻译”方法的相关使用
2015/07/27 Python
python登录并爬取淘宝信息代码示例
2017/12/09 Python
python微信跳一跳系列之色块轮廓定位棋盘
2018/02/26 Python
python爬取微信公众号文章
2018/08/31 Python
11个Python3字典内置方法大全与示例汇总
2019/05/13 Python
python实现对图片进行旋转,放缩,裁剪的功能
2019/08/07 Python
Python的垃圾回收机制详解
2019/08/28 Python
一行Python代码制作动态二维码的实现
2019/09/09 Python
python 实现多维数组转向量
2019/11/30 Python
django框架单表操作之增删改实例分析
2019/12/16 Python
Pytorch学习之torch用法----比较操作(Comparison Ops)
2020/06/28 Python
CSS3教程:边框属性border的极致应用
2009/04/02 HTML / CSS
迪卡侬中国官网:Decathlon中国
2020/08/10 全球购物
.net C#面试题
2012/08/28 面试题
函授大专自我鉴定
2013/11/01 职场文书
关于打架的检讨书
2014/01/17 职场文书
党的群众路线教育学习材料
2014/05/12 职场文书
2014年稽查工作总结
2014/12/20 职场文书
2015年高中班级工作总结
2015/07/21 职场文书
2016年社区“6.26”禁毒日宣传活动总结
2016/04/05 职场文书
员工工作心得体会
2019/05/07 职场文书
营销策划分析:怎么策划才能更好销量产品?
2019/09/04 职场文书