tensorflow模型转ncnn的操作方式


Posted in Python onMay 25, 2020

第一步把tensorflow保存的.ckpt模型转为pb模型, 并记下模型的输入输出名字.

第二步去ncnn的github上把仓库clone下来, 按照上面的要求装好依赖并make.

第三步是修改ncnn的CMakeList, 具体修改的位置有:

ncnn/CMakeList.txt 文件, 在文件开头处加入add_definitions(-std=c++11), 末尾处加上add_subdirectory(examples), 如果ncnn没有examples文件夹,就新建一个, 并加上CMakeList.txt文件.

ncnn/tools/CMakeList.txt 文件, 加入add_subdirectory(tensorflow)

原版的tools/tensorflow/tensorflow2ncnn.cpp里, 不支持tensorflow的elu, FusedBathNormalization, Conv2dBackpropback操作, 其实elu是支持的,只需要仿照relu的格式, 在.cpp文件里加上就行. FusedBatchNormalization就是ncnn/layer/里实现的batchnorm.cpp, 只是`tensorflow2ncnn里没有写上, 可以增加下面的内容:

else if (node.op() == "FusedBatchNorm")
{
 fprintf(pp, "%-16s", "BatchNorm");
}
...
else if (node.op() == "FusedBatchNorm")
{
 std::cout << "node name is FusedBatchNorm" << std::endl;
 tensorflow::TensorProto tensor;
 find_tensor_proto(weights, node, tensor);
 const tensorflow::TensorShapeProto& shape = tensor.tensor_shape();

 const tensorflow::TensorProto& gamma = weights[node.input(1)];
 const tensorflow::TensorProto& Beta = weights[node.input(2)];
 const tensorflow::TensorProto& mean = weights[node.input(3)];
 const tensorflow::TensorProto& var = weights[node.input(4)];

 int channels = gamma.tensor_shape().dim(0).size(); // data size
 int dtype = gamma.dtype();

 switch (dtype){
  case 1: 
  {

   const float * gamma_tensor = reinterpret_cast<const float *>(gamma.tensor_content().c_str());
   const float * mean_data = reinterpret_cast<const float *>(mean.tensor_content().c_str());
   const float * var_data = reinterpret_cast<const float *>(var.tensor_content().c_str());
   const float * b_data = reinterpret_cast<const float *>(Beta.tensor_content().c_str());
   for (int i=0; i< channels; ++i)
   {
    fwrite(gamma_tensor+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(mean_data+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(var_data+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(b_data+i, sizeof(float), 1, bp);
   }
  }
  default:
   std::cerr << "Type is not supported." << std::endl;

 }
 fprintf(pp, " 0=%d", channels);

 tensorflow::AttrValue value_epsilon;
 if (find_attr_value(node, "epsilon", value_epsilon)){
  float epsilon = value_epsilon.f();
  fprintf(pp, " 1=%f", epsilon);
 }
}

同理, Conv2dBackpropback其实就是ncnn里的反卷积操作, 只不过ncnn实现反卷积的操作和tensorflow内部实现反卷积的操作过程不一样, 但结果是一致的, 需要仿照普通卷积的写法加上去.

ncnn同样支持空洞卷积, 但无法识别tensorflow的空洞卷积, 具体原理可以看tensorflow空洞卷积的原理, tensorflow是改变featuremap做空洞卷积, 而ncnn是改变kernel做空洞卷积, 结果都一样. 需要对.proto文件修改即可完成空洞卷积.

总之ncnn对tensorflow的支持很不友好, 有的层还需要自己手动去实现, 还是很麻烦.

补充知识:pytorch模型转mxnet

介绍

gluon把mxnet再进行封装,封装的风格非常接近pytorch

使用gluon的好处是非常容易把pytorch模型向mxnet转化

唯一的问题是gluon封装还不成熟,封装好的layer不多,很多常用的layer 如concat,upsampling等layer都没有

这里关注如何把pytorch 模型快速转换成 mxnet基于symbol 和 exector设计的网络

pytorch转mxnet module

关键点:

mxnet 设计网络时symbol 名称要和pytorch初始化中各网络层名称对应

torch.load()读入pytorch模型checkpoint 字典,取当中的'state_dict'元素,也是一个字典

pytorch state_dict 字典中key是网络层参数的名称,val是参数ndarray

pytorch 的参数名称的组织形式和mxnet一样,但是连接符号不同,pytorch是'.',而mxnet是'_'比如:

pytorch '0.conv1.0.weight'
mxnet '0_conv1_0_weight'

pytorch 的参数array 和mxnet 的参数array 完全一样,只要名称对上,直接赋值即可初始化mxnet模型

需要做的有以下几点:

设计和pytorch网络对应的mxnet网络

加载pytorch checkpoint

调整pytorch checkpoint state_dict 的key名称和mxnet命名格式一致

FlowNet2S PytorchToMxnet

pytorch flownet2S 的checkpoint 可以在github上搜到

import mxnet as mx
from symbol_util import *
import pickle
 
def get_loss(data, label, loss_scale, name, get_input=False, is_sparse = False, type='stereo'):
 
 if type == 'stereo':
  data = mx.sym.Activation(data=data, act_type='relu',name=name+'relu')
 # loss
 if is_sparse:
  loss =mx.symbol.Custom(data=data, label=label, name=name, loss_scale= loss_scale, is_l1=True,
   op_type='SparseRegressionLoss')
 else:
  loss = mx.sym.MAERegressionOutput(data=data, label=label, name=name, grad_scale=loss_scale)
 return (loss,data) if get_input else loss
 
def flownet_s(loss_scale, is_sparse=False, name=''):
 img1 = mx.symbol.Variable('img1')
 img2 = mx.symbol.Variable('img2')
 data = mx.symbol.concat(img1,img2,dim=1)
 labels = {'loss{}'.format(i): mx.sym.Variable('loss{}_label'.format(i)) for i in range(0, 7)}
 # print('labels: ',labels)
 prediction = {}# a dict for loss collection
 loss = []#a list
 
 #normalize
 data = (data-125)/255
 
 # extract featrue
 conv1 = mx.sym.Convolution(data, pad=(3, 3), kernel=(7, 7), stride=(2, 2), num_filter=64, name=name + 'conv1_0')
 conv1 = mx.sym.LeakyReLU(data=conv1, act_type='leaky', slope=0.1)
 
 conv2 = mx.sym.Convolution(conv1, pad=(2, 2), kernel=(5, 5), stride=(2, 2), num_filter=128, name=name + 'conv2_0')
 conv2 = mx.sym.LeakyReLU(data=conv2, act_type='leaky', slope=0.1)
 
 conv3a = mx.sym.Convolution(conv2, pad=(2, 2), kernel=(5, 5), stride=(2, 2), num_filter=256, name=name + 'conv3_0')
 conv3a = mx.sym.LeakyReLU(data=conv3a, act_type='leaky', slope=0.1)
 
 conv3b = mx.sym.Convolution(conv3a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=256, name=name + 'conv3_1_0')
 conv3b = mx.sym.LeakyReLU(data=conv3b, act_type='leaky', slope=0.1)
 
 conv4a = mx.sym.Convolution(conv3b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=512, name=name + 'conv4_0')
 conv4a = mx.sym.LeakyReLU(data=conv4a, act_type='leaky', slope=0.1)
 
 conv4b = mx.sym.Convolution(conv4a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=512, name=name + 'conv4_1_0')
 conv4b = mx.sym.LeakyReLU(data=conv4b, act_type='leaky', slope=0.1)
 
 conv5a = mx.sym.Convolution(conv4b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=512, name=name + 'conv5_0')
 conv5a = mx.sym.LeakyReLU(data=conv5a, act_type='leaky', slope=0.1)
 
 conv5b = mx.sym.Convolution(conv5a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=512, name=name + 'conv5_1_0')
 conv5b = mx.sym.LeakyReLU(data=conv5b, act_type='leaky', slope=0.1)
 
 conv6a = mx.sym.Convolution(conv5b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=1024, name=name + 'conv6_0')
 conv6a = mx.sym.LeakyReLU(data=conv6a, act_type='leaky', slope=0.1)
 
 conv6b = mx.sym.Convolution(conv6a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=1024,
        name=name + 'conv6_1_0')
 conv6b = mx.sym.LeakyReLU(data=conv6b, act_type='leaky', slope=0.1, )
 
 #predict flow
 pr6 = mx.sym.Convolution(conv6b, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow6')
 prediction['loss6'] = pr6
 
 upsample_pr6to5 = mx.sym.Deconvolution(pr6, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow6_to_5', no_bias=True)
 upconv5 = mx.sym.Deconvolution(conv6b, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=512,
         name=name + 'deconv5_0', no_bias=False)
 upconv5 = mx.sym.LeakyReLU(data=upconv5, act_type='leaky', slope=0.1)
 iconv5 = mx.sym.Concat(conv5b, upconv5, upsample_pr6to5, dim=1)
 
 
 pr5 = mx.sym.Convolution(iconv5, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow5')
 prediction['loss5'] = pr5
 
 upconv4 = mx.sym.Deconvolution(iconv5, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=256,
         name=name + 'deconv4_0', no_bias=False)
 upconv4 = mx.sym.LeakyReLU(data=upconv4, act_type='leaky', slope=0.1)
 
 upsample_pr5to4 = mx.sym.Deconvolution(pr5, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow5_to_4', no_bias=True)
 
 iconv4 = mx.sym.Concat(conv4b, upconv4, upsample_pr5to4)
 
 pr4 = mx.sym.Convolution(iconv4, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow4')
 prediction['loss4'] = pr4
 
 upconv3 = mx.sym.Deconvolution(iconv4, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=128,
         name=name + 'deconv3_0', no_bias=False)
 upconv3 = mx.sym.LeakyReLU(data=upconv3, act_type='leaky', slope=0.1)
 
 upsample_pr4to3 = mx.sym.Deconvolution(pr4, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name= name + 'upsampled_flow4_to_3', no_bias=True)
 iconv3 = mx.sym.Concat(conv3b, upconv3, upsample_pr4to3)
 
 pr3 = mx.sym.Convolution(iconv3, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow3')
 prediction['loss3'] = pr3
 
 upconv2 = mx.sym.Deconvolution(iconv3, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=64,
         name=name + 'deconv2_0', no_bias=False)
 upconv2 = mx.sym.LeakyReLU(data=upconv2, act_type='leaky', slope=0.1)
 
 upsample_pr3to2 = mx.sym.Deconvolution(pr3, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow3_to_2', no_bias=True)
 iconv2 = mx.sym.Concat(conv2, upconv2, upsample_pr3to2)
 
 pr2 = mx.sym.Convolution(iconv2, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow2')
 prediction['loss2'] = pr2
 flow = mx.sym.UpSampling(arg0=pr2,scale=4,num_filter=2,num_args = 1,sample_type='nearest', name='upsample_flow2_to_1')
 # ignore the loss functions with loss scale of zero
 keys = loss_scale.keys()
 # keys.sort()
 #obtain the symbol of the losses
 for key in keys:
  # loss.append(get_loss(prediction[key] * 20, labels[key], loss_scale[key], name=key + name,get_input=False, is_sparse=is_sparse, type='flow'))
  loss.append(mx.sym.MAERegressionOutput(data=prediction[key] * 20, label=labels[key], name=key + name, grad_scale=loss_scale[key]))
 # print('loss: ',loss)
 #group 暂时不知道为嘛要group
 loss_group =mx.sym.Group(loss)
 # print('net: ',loss_group)
 return loss_group,flow
 
import gluonbook as gb
import torch
from utils.frame_utils import *
import numpy as np
if __name__ == '__main__':
 checkpoint = torch.load("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/flownet2_pytorch/FlowNet2-S_checkpoint.pth.tar")
 # # checkpoint是一个字典
 print(isinstance(checkpoint['state_dict'], dict))
 # # 打印checkpoint字典中的key名
 print('keys of checkpoint:')
 for i in checkpoint:
  print(i)
 print('')
 # # pytorch 模型参数保存在一个key名为'state_dict'的元素中
 state_dict = checkpoint['state_dict']
 # # state_dict也是一个字典
 print('keys of state_dict:')
 for i in state_dict:
  print(i)
  # print(state_dict[i].size())
 print('')
 # print(state_dict)
 #字典的value是torch.tensor
 print(torch.is_tensor(state_dict['conv1.0.weight']))
 #查看某个value的size
 print(state_dict['conv1.0.weight'].size())
 
 #flownet-mxnet init
 loss_scale={'loss2': 1.00,
    'loss3': 1.00,
    'loss4': 1.00,
    'loss5': 1.00,
    'loss6': 1.00}
 loss,flow = flownet_s(loss_scale=loss_scale,is_sparse=False)
 print('loss information: ')
 print('loss:',loss)
 print('type:',type(loss))
 print('list_arguments:',loss.list_arguments())
 print('list_outputs:',loss.list_outputs())
 print('list_inputs:',loss.list_inputs())
 print('')
 
 print('flow information: ')
 print('flow:',flow)
 print('type:',type(flow))
 print('list_arguments:',flow.list_arguments())
 print('list_outputs:',flow.list_outputs())
 print('list_inputs:',flow.list_inputs())
 print('')
 name_mxnet = symbol.list_arguments()
 print(type(name_mxnet))
 for key in name_mxnet:
  print(key)
 
 name_mxnet.sort()
 for key in name_mxnet:
  print(key)
 print(name_mxnet)
 
 shapes = (1, 3, 384, 512)
 ctx = gb.try_gpu()
 # exe = symbol.simple_bind(ctx=ctx, img1=shapes,img2=shapes)
 exe = flow.simple_bind(ctx=ctx, img1=shapes, img2=shapes)
 print('exe type: ',type(exe))
 print('exe: ',exe)
 #module
 # mod = mx.mod.Module(flow)
 # print('mod type: ', type(exe))
 # print('mod: ', exe)
 
 pim1 = read_gen("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/data/0000007-img0.ppm")
 pim2 = read_gen("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/data/0000007-img1.ppm")
 print(pim1.shape)
 
 '''使用pytorch 的state_dict 初始化 mxnet 模型参数'''
 for key in state_dict:
  # print(type(key))
  k_split = key.split('.')
  key_mx = '_'.join(k_split)
  # print(key,key_mx)
  try:
   exe.arg_dict[key_mx][:]=state_dict[key].data
  except:
   print(key,exe.arg_dict[key_mx].shape,state_dict[key].data.shape)
 
 exe.arg_dict['img1'][:] = pim1[np.newaxis, :, :, :].transpose(0, 3, 1, 2).data
 exe.arg_dict['img2'][:] = pim2[np.newaxis, :, :, :].transpose(0, 3, 1, 2).data
 
 result = exe.forward()
 print('result: ',type(result))
 # for tmp in result:
 #  print(type(tmp))
 #  print(tmp.shape)
 # color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1, 2, 0))
 outputs = exe.outputs
 print('output type: ',type(outputs))
 # for tmp in outputs:
 #  print(type(tmp))
 #  print(tmp.shape)
 
 #来自pytroch flownet2
 from visualize import flow2color
 # color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1,2,0))
 flow_color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1, 2, 0))
 print('color type:',type(flow_color))
 import matplotlib.pyplot as plt
 #来自pytorch
 from torchvision.transforms import ToPILImage
 TF = ToPILImage()
 images = TF(flow_color)
 images.show()
 # plt.imshow(color)

以上这篇tensorflow模型转ncnn的操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python列表推导式的使用方法
Nov 21 Python
Python的Django框架中settings文件的部署建议
May 30 Python
python实现计算倒数的方法
Jul 11 Python
Python实现命令行通讯录实例教程
Aug 18 Python
浅析python协程相关概念
Jan 20 Python
Numpy array数据的增、删、改、查实例
Jun 04 Python
用Python批量把文件复制到另一个文件夹的实现方法
Aug 16 Python
python框架flask表单实现详解
Nov 04 Python
python GUI库图形界面开发之PyQt5状态栏控件QStatusBar详细使用方法实例
Feb 28 Python
Python CSS选择器爬取京东网商品信息过程解析
Jun 01 Python
Django之腾讯云短信的实现
Jun 12 Python
python 爬虫之selenium可视化爬虫的实现
Dec 04 Python
MxNet预训练模型到Pytorch模型的转换方式
May 25 #Python
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
May 25 #Python
Pytorch通过保存为ONNX模型转TensorRT5的实现
May 25 #Python
tensorflow pb to tflite 精度下降详解
May 25 #Python
Python HTMLTestRunner测试报告view按钮失效解决方案
May 25 #Python
python用opencv完成图像分割并进行目标物的提取
May 25 #Python
Pytorch转tflite方式
May 25 #Python
You might like
php中数据的批量导入(csv文件)
2006/10/09 PHP
php empty()与isset()区别的详细介绍
2013/06/17 PHP
php调用shell的方法
2014/11/05 PHP
PHP实现事件机制的方法
2015/07/10 PHP
php删除txt文件指定行及按行读取txt文档数据的方法
2017/01/30 PHP
PHP实现的折半查询算法示例
2017/10/09 PHP
TP3.2.3框架使用CKeditor编辑器在页面中上传图片的方法分析
2019/12/31 PHP
JavaScript Cookie 直接浏览网站分网址
2009/12/08 Javascript
用jquery ajax获取网站Alexa排名的代码
2009/12/12 Javascript
form表单中去掉默认的enter键提交并绑定js方法实现代码
2013/04/01 Javascript
cookie.js 加载顺序问题怎么才有效
2013/07/31 Javascript
js确认删除对话框适用于a标签及submit
2014/07/10 Javascript
JavaScript定义类和对象的方法
2014/11/26 Javascript
ECMAScript 6即将带给我们新的数组操作方法前瞻
2015/01/06 Javascript
你所不了解的javascript操作DOM的细节知识点(一)
2015/06/17 Javascript
针对后台列表table拖拽比较实用的jquery拖动排序
2016/10/10 Javascript
Bootstrap基本组件学习笔记之下拉菜单(7)
2016/12/07 Javascript
解决vue中无法动态修改jqgrid组件 url地址的问题
2018/03/01 Javascript
Nodejs中的JWT和Session的使用
2018/08/21 NodeJs
vue router 跳转后回到顶部的实例
2018/08/31 Javascript
javascript删除数组元素的七个方法示例
2019/09/09 Javascript
JavaScript(js)处理的HTML事件、键盘事件、鼠标事件简单示例
2019/11/19 Javascript
python数据结构树和二叉树简介
2014/04/29 Python
使用Python获取Linux系统的各种信息
2014/07/10 Python
在windows下快速搭建web.py开发框架方法
2016/04/22 Python
Python提取网页中超链接的方法
2016/09/18 Python
Python使用shutil模块实现文件拷贝
2020/07/31 Python
Python 的 __str__ 和 __repr__ 方法对比
2020/09/02 Python
彪马香港官方网上商店:PUMA香港
2020/12/06 全球购物
办公室前台岗位职责
2014/01/04 职场文书
鼓舞士气的口号
2014/06/16 职场文书
2014单位领导班子四风对照检查材料思想汇报
2014/09/25 职场文书
科技馆观后感
2015/06/08 职场文书
孔子观后感
2015/06/08 职场文书
Nginx四层负载均衡的配置指南
2021/06/11 Servers
Vue Element plus使用方法梳理
2022/12/24 Vue.js