Python编程实现蚁群算法详解


Posted in Python onNovember 13, 2017

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

Python编程实现蚁群算法详解

作图源码:

from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

height3d = np.array([[2000,1400,800,650,500,750,1000,950,900,800,700,900,1100,1050,1000,1150,1300,1250,1200,1350,1500],          [1100,900,700,625,550,825,1100,1150,1200,925,650,750,850,950,1050,1175,1300,1350,1400,1425,1450],          [200,400,600,600,600,900,1200,1350,1500,1050,600,600,600,850,1100,1200,1300,1450,1600,1500,1400],          [450,500,550,575,600,725,850,875,900,750,600,600,600,725,850,900,950,1150,1350,1400,1450],          [700,600,500,550,600,550,500,400,300,450,600,600,600,600,600,600,600,850,1100,1300,1500],          [500,525,550,575,600,575,550,450,350,475,600,650,700,650,600,600,600,725,850,1150,1450],          [300,450,600,600,600,600,600,500,400,500,600,700,800,700,600,600,600,600,600,1000,1400],          [550,525,500,550,600,875,1150,900,650,725,800,700,600,875,1150,1175,1200,975,750,875,1000],          [800,600,400,500,600,1150,1700,1300,900,950,1000,700,400,1050,1700,1750,1800,1350,900,750,600],          [650,600,550,625,700,1175,1650,1275,900,1100,1300,1275,1250,1475,1700,1525,1350,1200,1050,950,850],          [500,600,700,750,800,1200,1600,1250,900,1250,1600,1850,2100,1900,1700,1300,900,1050,1200,1150,1100],          [400,375,350,600,850,1200,1550,1250,950,1225,1500,1750,2000,1950,1900,1475,1050,975,900,1175,1450],          [300,150,0,450,900,1200,1500,1250,1000,1200,1400,1650,1900,2000,2100,1650,1200,900,600,1200,1800],          [600,575,550,750,950,1275,1600,1450,1300,1300,1300,1525,1750,1625,1500,1450,1400,1125,850,1200,1550],          [900,1000,1100,1050,1000,1350,1700,1650,1600,1400,1200,1400,1600,1250,900,1250,1600,1350,1100,1200,1300],          [750,850,950,900,850,1000,1150,1175,1200,1300,1400,1325,1250,1125,1000,1150,1300,1075,850,975,1100],          [600,700,800,750,700,650,600,700,800,1200,1600,1250,900,1000,1100,1050,1000,800,600,750,900],          [750,775,800,725,650,700,750,775,800,1000,1200,1025,850,975,1100,950,800,900,1000,1050,1100],          [900,850,800,700,600,750,900,850,800,800,800,800,800,950,1100,850,600,1000,1400,1350,1300],          [750,800,850,850,850,850,850,825,800,750,700,775,850,1000,1150,875,600,925,1250,1100,950],          [600,750,900,1000,1100,950,800,800,800,700,600,750,900,1050,1200,900,600,850,1100,850,600]])

fig = figure()
ax = Axes3D(fig)
X = np.arange(21)
Y = np.arange(21)
X, Y = np.meshgrid(X, Y)
Z = -20*np.exp(-0.2*np.sqrt(np.sqrt(((X-10)**2+(Y-10)**2)/2)))+20+np.e-np.exp((np.cos(2*np.pi*X)+np.sin(2*np.pi*Y))/2)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='cool')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z')
ax.set_title('3D map')


point0 = [0,9,Z[0][9]] 
point1 = [20,7,Z[20][7]]

ax.plot([point0[0]],[point0[1]],[point0[2]],'r',marker = u'o',markersize = 15)
ax.plot([point1[0]],[point1[1]],[point1[2]],'r',marker = u'o',markersize = 15)

x0,y0,_ = proj3d.proj_transform(point0[0],point0[1],point0[2], ax.get_proj())
x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2], ax.get_proj())

label = pylab.annotate(
  "start", 
  xy = (x0, y0), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
label2 = pylab.annotate(
  "end", 
  xy = (x1, y1), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
def update_position(e):
  x2, y2, _ = proj3d.proj_transform(point0[0],point0[1],point0[2],ax.get_proj())
  label.xy = x2,y2
  label.update_positions(fig.canvas.renderer)

  x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2],ax.get_proj())
  label2.xy = x1,y1
  label2.update_positions(fig.canvas.renderer)
  fig.canvas.draw()

fig.canvas.mpl_connect('button_release_event', update_position)

基本原理

蚂蚁k根据各个城市间链接路径上的信息素浓度决定其下一个访问城市,设Pkij(t)表示t时刻蚂蚁k从城市i转移到矩阵j的概率,其计算公式为

Python编程实现蚁群算法详解

计算完城市间的转移概率后,采用与遗传算法中一样的轮盘赌方法选择下一个待访问的城市。

当所有的蚂蚁完成一次循环后,各个城市间链接路径上的信息素浓度需进行更新,计算公式为

Python编程实现蚁群算法详解

其中,Δτkij表示第k只蚂蚁在城市i与城市j连接路径上释放的信息素浓度;Δτij表示所有蚂蚁在城市i与城市j连接路径上释放的信息素浓度之和。

蚂蚁释放信息素的模型

Python编程实现蚁群算法详解

程序代码:

import numpy as np
import matplotlib.pyplot as plt
%pylab
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
            [880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
            [1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
            [725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
            [300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
            [1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
            [420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
            [685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
            [475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
            [830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
            [1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
  num = coordinates.shape[0]
  distmat = np.zeros((52,52))
  for i in range(num):
    for j in range(i,num):
      distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])
  return distmat
distmat = getdistmat(coordinates)
numant = 40 #蚂蚁个数
numcity = coordinates.shape[0] #城市个数
alpha = 1  #信息素重要程度因子
beta = 5  #启发函数重要程度因子
rho = 0.1  #信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵
pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表
distmat = getdistmat(coordinates) #城市的距离矩阵
lengthaver = np.zeros(itermax) #各代路径的平均长度
lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度
while iter < itermax:
  # 随机产生各个蚂蚁的起点城市
  if numant <= numcity:#城市数比蚂蚁数多
    pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]
  else: #蚂蚁数比城市数多,需要补足
    pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]
    pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]
  length = np.zeros(numant) #计算各个蚂蚁的路径距离
  for i in range(numant):
    visiting = pathtable[i,0] # 当前所在的城市
    #visited = set() #已访问过的城市,防止重复
    #visited.add(visiting) #增加元素
    unvisited = set(range(numcity))#未访问的城市
    unvisited.remove(visiting) #删除元素
    for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市
      #每次用轮盘法选择下一个要访问的城市
      listunvisited = list(unvisited)
      probtrans = np.zeros(len(listunvisited))
      for k in range(len(listunvisited)):
        probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)\
            *np.power(etatable[visiting][listunvisited[k]],alpha)
      cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()
      cumsumprobtrans -= np.random.rand()
      k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市
      pathtable[i,j] = k
      unvisited.remove(k)
      #visited.add(k)
      length[i] += distmat[visiting][k]
      visiting = k
    length[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离
  #print length
  # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
  lengthaver[iter] = length.mean()
  if iter == 0:
    lengthbest[iter] = length.min()
    pathbest[iter] = pathtable[length.argmin()].copy()   
  else:
    if length.min() > lengthbest[iter-1]:
      lengthbest[iter] = lengthbest[iter-1]
      pathbest[iter] = pathbest[iter-1].copy()
    else:
      lengthbest[iter] = length.min()
      pathbest[iter] = pathtable[length.argmin()].copy()  
  # 更新信息素
  changepheromonetable = np.zeros((numcity,numcity))
  for i in range(numant):
    for j in range(numcity-1):
      changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]
    changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]
  pheromonetable = (1-rho)*pheromonetable + changepheromonetable
  iter += 1 #迭代次数指示器+1
  #观察程序执行进度,该功能是非必须的
  if (iter-1)%20==0: 
    print iter-1
# 做出平均路径长度和最优路径长度    
fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))
axes[0].plot(lengthaver,'k',marker = u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest,'k',marker = u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')
plt.close()
#作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$\cdot$')
plt.xlim([-100,2000])
plt.ylim([-100,1500])
for i in range(numcity-1):#
  m,n = bestpath[i],bestpath[i+1]
  print m,n
  plt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')
plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')
ax=plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')
plt.close()

Python编程实现蚁群算法详解

Python编程实现蚁群算法详解

总结

以上就是本文关于Python编程实现蚁群算法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python实现图片处理和特征提取详解、python图像常规操作、python先序遍历二叉树问题等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

Python 相关文章推荐
python的tkinter布局之简单的聊天窗口实现方法
Sep 03 Python
python3.6连接MySQL和表的创建与删除实例代码
Dec 28 Python
使用Pandas对数据进行筛选和排序的实现
Jul 29 Python
详解Python3 pickle模块用法
Sep 16 Python
使用pyqt 实现重复打开多个相同界面
Dec 13 Python
pytorch 实现tensor与numpy数组转换
Dec 27 Python
python3实现raspberry pi(树莓派)4驱小车控制程序
Feb 12 Python
Python cookie的保存与读取、SSL讲解
Feb 17 Python
在Matplotlib图中插入LaTex公式实例
Apr 17 Python
Python rabbitMQ如何实现生产消费者模式
Aug 24 Python
Python gevent协程切换实现详解
Sep 14 Python
python如何用matplotlib创建三维图表
Jan 26 Python
Python编程实现粒子群算法(PSO)详解
Nov 13 #Python
人工智能最火编程语言 Python大战Java!
Nov 13 #Python
Python随机生成均匀分布在单位圆内的点代码示例
Nov 13 #Python
python、java等哪一门编程语言适合人工智能?
Nov 13 #Python
K-means聚类算法介绍与利用python实现的代码示例
Nov 13 #Python
python通过opencv实现批量剪切图片
Nov 13 #Python
flask + pymysql操作Mysql数据库的实例
Nov 13 #Python
You might like
php array_merge下进行数组合并的代码
2008/07/22 PHP
基于PHPExcel的常用方法总结
2013/06/13 PHP
json跟xml的对比分析
2008/06/10 Javascript
JavaScript 事件属性绑定带参数的函数
2009/03/13 Javascript
JavaScript中的isXX系列是否继续使用的分析
2011/04/16 Javascript
UI Events 用户界面事件
2012/06/27 Javascript
用js调用迅雷下载代码的二种方法
2013/04/15 Javascript
JavaSript中变量的作用域闭包的深入理解
2014/05/12 Javascript
简介JavaScript中setUTCSeconds()方法的使用
2015/06/12 Javascript
AngularJS equal比较对象实例详解
2016/09/14 Javascript
基于touch.js手势库+zepto.js插件开发图片查看器(滑动、缩放、双击缩放)
2016/11/17 Javascript
网站发布后Bootstrap框架引用woff字体无法正常显示的解决方法
2016/11/24 Javascript
DropDownList控件绑定数据源的三种方法
2016/12/24 Javascript
JavaScript实现精美个性导航栏筋斗云效果
2017/10/29 Javascript
vue.js element-ui tree树形控件改iview的方法
2018/03/29 Javascript
JavaScript的词法结构精华篇
2018/10/17 Javascript
通过javascript实现段落的收缩与展开
2019/06/26 Javascript
Python调用C语言开发的共享库方法实例
2015/03/18 Python
Python标准库06之子进程 (subprocess包) 详解
2016/12/07 Python
开源Web应用框架Django图文教程
2017/03/09 Python
pygame游戏之旅 按钮上添加文字的方法
2018/11/21 Python
一行Python代码制作动态二维码的实现
2019/09/09 Python
python中从for循环延申到推导式的具体使用
2019/11/29 Python
python实现模拟器爬取抖音评论数据的示例代码
2021/01/06 Python
css3 border-image使用说明
2010/06/23 HTML / CSS
基于html和CSS3制作酷炫的导航栏
2015/09/23 HTML / CSS
Myprotein蛋白粉美国官网:欧洲畅销运动营养品牌
2016/11/15 全球购物
爱情保证书范文
2014/02/01 职场文书
竞争性谈判邀请书
2014/02/06 职场文书
求职者怎样写自荐信
2014/04/13 职场文书
《青山处处埋忠骨》教学反思
2014/04/22 职场文书
2014工程部年度工作总结
2014/12/17 职场文书
土建施工员岗位职责
2015/04/11 职场文书
2015年小学实验室工作总结
2015/07/28 职场文书
省级三好学生主要事迹材料
2015/11/03 职场文书
我家女友可不止可爱呢 公开OP主题曲无字幕动画MV
2022/04/11 日漫