Python编程实现蚁群算法详解


Posted in Python onNovember 13, 2017

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

Python编程实现蚁群算法详解

作图源码:

from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

height3d = np.array([[2000,1400,800,650,500,750,1000,950,900,800,700,900,1100,1050,1000,1150,1300,1250,1200,1350,1500],          [1100,900,700,625,550,825,1100,1150,1200,925,650,750,850,950,1050,1175,1300,1350,1400,1425,1450],          [200,400,600,600,600,900,1200,1350,1500,1050,600,600,600,850,1100,1200,1300,1450,1600,1500,1400],          [450,500,550,575,600,725,850,875,900,750,600,600,600,725,850,900,950,1150,1350,1400,1450],          [700,600,500,550,600,550,500,400,300,450,600,600,600,600,600,600,600,850,1100,1300,1500],          [500,525,550,575,600,575,550,450,350,475,600,650,700,650,600,600,600,725,850,1150,1450],          [300,450,600,600,600,600,600,500,400,500,600,700,800,700,600,600,600,600,600,1000,1400],          [550,525,500,550,600,875,1150,900,650,725,800,700,600,875,1150,1175,1200,975,750,875,1000],          [800,600,400,500,600,1150,1700,1300,900,950,1000,700,400,1050,1700,1750,1800,1350,900,750,600],          [650,600,550,625,700,1175,1650,1275,900,1100,1300,1275,1250,1475,1700,1525,1350,1200,1050,950,850],          [500,600,700,750,800,1200,1600,1250,900,1250,1600,1850,2100,1900,1700,1300,900,1050,1200,1150,1100],          [400,375,350,600,850,1200,1550,1250,950,1225,1500,1750,2000,1950,1900,1475,1050,975,900,1175,1450],          [300,150,0,450,900,1200,1500,1250,1000,1200,1400,1650,1900,2000,2100,1650,1200,900,600,1200,1800],          [600,575,550,750,950,1275,1600,1450,1300,1300,1300,1525,1750,1625,1500,1450,1400,1125,850,1200,1550],          [900,1000,1100,1050,1000,1350,1700,1650,1600,1400,1200,1400,1600,1250,900,1250,1600,1350,1100,1200,1300],          [750,850,950,900,850,1000,1150,1175,1200,1300,1400,1325,1250,1125,1000,1150,1300,1075,850,975,1100],          [600,700,800,750,700,650,600,700,800,1200,1600,1250,900,1000,1100,1050,1000,800,600,750,900],          [750,775,800,725,650,700,750,775,800,1000,1200,1025,850,975,1100,950,800,900,1000,1050,1100],          [900,850,800,700,600,750,900,850,800,800,800,800,800,950,1100,850,600,1000,1400,1350,1300],          [750,800,850,850,850,850,850,825,800,750,700,775,850,1000,1150,875,600,925,1250,1100,950],          [600,750,900,1000,1100,950,800,800,800,700,600,750,900,1050,1200,900,600,850,1100,850,600]])

fig = figure()
ax = Axes3D(fig)
X = np.arange(21)
Y = np.arange(21)
X, Y = np.meshgrid(X, Y)
Z = -20*np.exp(-0.2*np.sqrt(np.sqrt(((X-10)**2+(Y-10)**2)/2)))+20+np.e-np.exp((np.cos(2*np.pi*X)+np.sin(2*np.pi*Y))/2)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='cool')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z')
ax.set_title('3D map')


point0 = [0,9,Z[0][9]] 
point1 = [20,7,Z[20][7]]

ax.plot([point0[0]],[point0[1]],[point0[2]],'r',marker = u'o',markersize = 15)
ax.plot([point1[0]],[point1[1]],[point1[2]],'r',marker = u'o',markersize = 15)

x0,y0,_ = proj3d.proj_transform(point0[0],point0[1],point0[2], ax.get_proj())
x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2], ax.get_proj())

label = pylab.annotate(
  "start", 
  xy = (x0, y0), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
label2 = pylab.annotate(
  "end", 
  xy = (x1, y1), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
def update_position(e):
  x2, y2, _ = proj3d.proj_transform(point0[0],point0[1],point0[2],ax.get_proj())
  label.xy = x2,y2
  label.update_positions(fig.canvas.renderer)

  x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2],ax.get_proj())
  label2.xy = x1,y1
  label2.update_positions(fig.canvas.renderer)
  fig.canvas.draw()

fig.canvas.mpl_connect('button_release_event', update_position)

基本原理

蚂蚁k根据各个城市间链接路径上的信息素浓度决定其下一个访问城市,设Pkij(t)表示t时刻蚂蚁k从城市i转移到矩阵j的概率,其计算公式为

Python编程实现蚁群算法详解

计算完城市间的转移概率后,采用与遗传算法中一样的轮盘赌方法选择下一个待访问的城市。

当所有的蚂蚁完成一次循环后,各个城市间链接路径上的信息素浓度需进行更新,计算公式为

Python编程实现蚁群算法详解

其中,Δτkij表示第k只蚂蚁在城市i与城市j连接路径上释放的信息素浓度;Δτij表示所有蚂蚁在城市i与城市j连接路径上释放的信息素浓度之和。

蚂蚁释放信息素的模型

Python编程实现蚁群算法详解

程序代码:

import numpy as np
import matplotlib.pyplot as plt
%pylab
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
            [880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
            [1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
            [725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
            [300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
            [1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
            [420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
            [685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
            [475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
            [830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
            [1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
  num = coordinates.shape[0]
  distmat = np.zeros((52,52))
  for i in range(num):
    for j in range(i,num):
      distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])
  return distmat
distmat = getdistmat(coordinates)
numant = 40 #蚂蚁个数
numcity = coordinates.shape[0] #城市个数
alpha = 1  #信息素重要程度因子
beta = 5  #启发函数重要程度因子
rho = 0.1  #信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵
pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表
distmat = getdistmat(coordinates) #城市的距离矩阵
lengthaver = np.zeros(itermax) #各代路径的平均长度
lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度
while iter < itermax:
  # 随机产生各个蚂蚁的起点城市
  if numant <= numcity:#城市数比蚂蚁数多
    pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]
  else: #蚂蚁数比城市数多,需要补足
    pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]
    pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]
  length = np.zeros(numant) #计算各个蚂蚁的路径距离
  for i in range(numant):
    visiting = pathtable[i,0] # 当前所在的城市
    #visited = set() #已访问过的城市,防止重复
    #visited.add(visiting) #增加元素
    unvisited = set(range(numcity))#未访问的城市
    unvisited.remove(visiting) #删除元素
    for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市
      #每次用轮盘法选择下一个要访问的城市
      listunvisited = list(unvisited)
      probtrans = np.zeros(len(listunvisited))
      for k in range(len(listunvisited)):
        probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)\
            *np.power(etatable[visiting][listunvisited[k]],alpha)
      cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()
      cumsumprobtrans -= np.random.rand()
      k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市
      pathtable[i,j] = k
      unvisited.remove(k)
      #visited.add(k)
      length[i] += distmat[visiting][k]
      visiting = k
    length[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离
  #print length
  # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
  lengthaver[iter] = length.mean()
  if iter == 0:
    lengthbest[iter] = length.min()
    pathbest[iter] = pathtable[length.argmin()].copy()   
  else:
    if length.min() > lengthbest[iter-1]:
      lengthbest[iter] = lengthbest[iter-1]
      pathbest[iter] = pathbest[iter-1].copy()
    else:
      lengthbest[iter] = length.min()
      pathbest[iter] = pathtable[length.argmin()].copy()  
  # 更新信息素
  changepheromonetable = np.zeros((numcity,numcity))
  for i in range(numant):
    for j in range(numcity-1):
      changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]
    changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]
  pheromonetable = (1-rho)*pheromonetable + changepheromonetable
  iter += 1 #迭代次数指示器+1
  #观察程序执行进度,该功能是非必须的
  if (iter-1)%20==0: 
    print iter-1
# 做出平均路径长度和最优路径长度    
fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))
axes[0].plot(lengthaver,'k',marker = u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest,'k',marker = u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')
plt.close()
#作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$\cdot$')
plt.xlim([-100,2000])
plt.ylim([-100,1500])
for i in range(numcity-1):#
  m,n = bestpath[i],bestpath[i+1]
  print m,n
  plt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')
plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')
ax=plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')
plt.close()

Python编程实现蚁群算法详解

Python编程实现蚁群算法详解

总结

以上就是本文关于Python编程实现蚁群算法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python实现图片处理和特征提取详解、python图像常规操作、python先序遍历二叉树问题等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

Python 相关文章推荐
深入讲解Python函数中参数的使用及默认参数的陷阱
Mar 13 Python
python脚本监控docker容器
Apr 27 Python
Python中defaultdict与lambda表达式用法实例小结
Apr 09 Python
Python 在字符串中加入变量的实例讲解
May 02 Python
利用pandas读取中文数据集的方法
Jul 25 Python
为什么str(float)在Python 3中比Python 2返回更多的数字
Oct 16 Python
Django页面数据的缓存与使用的具体方法
Apr 23 Python
解决Mac下使用python的坑
Aug 13 Python
安装PyInstaller失败问题解决
Dec 14 Python
Python识别验证码的实现示例
Sep 30 Python
详解pycharm配置python解释器的问题
Oct 15 Python
C站最全Python标准库总结,你想要的都在这里
Jul 03 Python
Python编程实现粒子群算法(PSO)详解
Nov 13 #Python
人工智能最火编程语言 Python大战Java!
Nov 13 #Python
Python随机生成均匀分布在单位圆内的点代码示例
Nov 13 #Python
python、java等哪一门编程语言适合人工智能?
Nov 13 #Python
K-means聚类算法介绍与利用python实现的代码示例
Nov 13 #Python
python通过opencv实现批量剪切图片
Nov 13 #Python
flask + pymysql操作Mysql数据库的实例
Nov 13 #Python
You might like
获取PHP警告错误信息的解决方法
2013/06/03 PHP
PHP Global定义全局变量使用说明
2013/08/15 PHP
PHP对象递归引用造成内存泄漏分析
2014/08/28 PHP
PHP将字符分解为多个字符串的方法
2014/11/22 PHP
PHP中的常见魔术方法功能作用及用法实例
2015/07/01 PHP
在WordPress中安装使用视频播放器插件Hana Flv Player
2016/01/04 PHP
PHP的几个常用加密函数
2016/02/03 PHP
PHP 获取客户端 IP 地址的方法实例代码
2018/11/11 PHP
左侧是表头的JS表格控件(自写,网上没有的)
2013/06/04 Javascript
你可能不知道的JavaScript的new Function()方法
2014/04/17 Javascript
js的参数有长度限制吗?发现不能超过2083个字符
2014/04/20 Javascript
BootStrap使用popover插件实现鼠标经过显示并保持显示框
2016/06/23 Javascript
详解webpack打包vue时提取css
2017/05/26 Javascript
详解webpack介绍&amp;安装&amp;常用命令
2017/06/29 Javascript
在vue项目中安装使用Mint-UI的方法
2017/12/27 Javascript
NodeJS简单实现WebSocket功能示例
2018/02/10 NodeJs
浅谈微信页面入口文件被缓存解决方案
2018/09/29 Javascript
element上传组件循环引用及简单时间倒计时的实现
2018/10/01 Javascript
vue基础之事件简写、事件对象、冒泡、默认行为、键盘事件实例分析
2019/03/11 Javascript
详解用async/await来处理异步
2019/08/28 Javascript
[02:14]2016国际邀请赛中国区预选赛Ehome晋级之路
2016/07/01 DOTA
python持久性管理pickle模块详细介绍
2015/02/18 Python
Python中MySQL数据迁移到MongoDB脚本的方法
2016/04/28 Python
python和flask中返回JSON数据的方法
2018/03/26 Python
python中多个装饰器的调用顺序详解
2019/07/16 Python
python在协程中增加任务实例操作
2021/02/28 Python
英国优质鞋类专家:Robinson’s Shoes
2017/12/08 全球购物
劳资专员岗位职责
2013/12/27 职场文书
思想品德课教学反思
2014/02/10 职场文书
学生未请假就回家检讨书
2014/09/22 职场文书
2014年政协委员工作总结
2014/12/01 职场文书
看上去很美观后感
2015/06/10 职场文书
单位更名证明
2015/06/18 职场文书
党员学习中国梦心得体会
2016/01/05 职场文书
创业者如何撰写出一份打动投资人的商业计划书?
2019/07/02 职场文书
MSSQL基本语法操作
2022/04/11 SQL Server