Python编程实现粒子群算法(PSO)详解


Posted in Python onNovember 13, 2017

1 原理

粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的。假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置)。最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索。

利用粒子群算法解决实际问题本质上就是利用粒子群算法求解函数的最值。因此需要事先把实际问题抽象为一个数学函数,称之为适应度函数。在粒子群算法中,每只鸟都可以看成是问题的一个解,这里我们通常把鸟称之为粒子,每个粒子都拥有:

位置,可以理解函数的自变量的值;
经验,也即是自身经历过的距离食物最近的位置;
速度,可以理解为自变量的变化值;
适应度,距离食物的位置,也就是函数值。

粒子群算法的过程

Python编程实现粒子群算法(PSO)详解

                                              PSO流程图

初始化。包括根据给定的粒子个数,初始化粒子,包括初始化一下的值:

位置:解空间内的随机值;
经验:与初始位置相等;
速度:0;
适应度:根据位置,带入适应度函数,得到适应度值。
更新。包括两部分:
粒子自身信息:包括根据下面的公式更新粒子的速度、位置,根据适应度函数更新适应度,然后和用更新后的适应度和自身经验进行比较,如果新的适应度由于经验的适应度,就利用当前位置更新经验;

Python编程实现粒子群算法(PSO)详解

速度更新公式

Python编程实现粒子群算法(PSO)详解

位置更新公式

上面公式中:i表示粒子编号;t表示时刻,反映在迭代次数上;w是惯性权重,一般设置在0.4左右;c表示学习因子,一般都取值为2;Xpbest表示的是粒子i的经验,也即是粒子i所到过最佳位置;Xgbest代表的是全局最优粒子的位置;r是0到1之间的随机值。

种群信息:把当前适应度和全局最优位置的适应度进行比较,如果当前适应度优于全局最优的适应度,那么久用当前粒子替换群居最优。

判断结束条件。结束条件包括最大迭代次数和适应度的阈值。

2 代码

实验环境为python 2.7.11。

这个代码最初是用于求解一维最大熵分割图像问题的,因此是求解函数最大值,如果需要求解最小值,把代码中的大于号全部改成小于号就可以了。

首先需要解决的是粒子的存储,我第一反应是利用结构体来存储,但是python并没有相应的数据结构,所以我选择用一个类来表示粒子结构,该类的一个对象就是一个粒子,上代码:

class bird:
 """
 speed:速度
 position:位置
 fit:适应度
 lbestposition:经历的最佳位置
 lbestfit:经历的最佳的适应度值
 """
 def __init__(self, speed, position, fit, lBestPosition, lBestFit):
  self.speed = speed
  self.position = position
  self.fit = fit
  self.lBestFit = lBestPosition
  self.lBestPosition = lPestFit

接下来就是粒子群算法的主干部分,用一个类来封装,代码:

import random

class PSO:
 """
 fitFunc:适应度函数
 birdNum:种群规模
 w:惯性权重
 c1,c2:个体学习因子,社会学习因子
 solutionSpace:解空间,列表类型:[最小值,最大值]
 """
 def __init__(self, fitFunc, birdNum, w, c1, c2, solutionSpace):
  self.fitFunc = fitFunc
  self.w = w
  self.c1 = c1
  self.c2 = c2
  self.birds, self.best = self.initbirds(birdNum, solutionSpace)

 def initbirds(self, size, solutionSpace):
  birds = []
  for i in range(size):
   position = random.uniform(solutionSpace[0], solutionSpace[1])
   speed = 0
   fit = self.fitFunc(position)
   birds.append(bird(speed, position, fit, position, fit))
  best = birds[0]
  for bird in birds:
   if bird.fit > best.fit:
    best = bird
  return birds,best

 def updateBirds(self):
  for bird in self.birds:
   # 更新速度
   bird.speed = self.w * bird.speed + self.c1 * random.random() * (bird.lBestPosition - bird.position) + self.c2 * random.random() * (self.best.position - bird.position)
   # 更新位置
   bird.position = bird.position + bird.speed
   # 跟新适应度
   bird.fit = self.fitFunc(bird.position)
   # 查看是否需要更新经验最优
   if bird.fit > bird.lBestFit:
    bird.lBestFit = bird.fit
    bird.lBestPosition = bird.position

 def solve(self, maxIter):
  # 只考虑了最大迭代次数,如需考虑阈值,添加判断语句就好
  for i in range(maxIter):
   # 更新粒子
   self.updateBirds()
   for bird in self.birds:
    # 查看是否需要更新全局最优
    if bird.fit > self.best.fit:
     self.best = bird

有了以上代码,只需要自定义适应度函数fitFunc就可以进行求解,但是需要注意的是只适用于求解 一维问题 。

总结

以上就是本文关于Python编程实现粒子群算法(PSO)详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Python算法输出1-9数组形成的结果为100的所有运算式、Python内存管理方式和垃圾回收算法解析、Python随机生成均匀分布在单位圆内的点代码示例等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

Python 相关文章推荐
python中json格式数据输出的简单实现方法
Oct 31 Python
基于Django用户认证系统详解
Feb 21 Python
python控制windows剪贴板,向剪贴板中写入图片的实例
May 31 Python
Python这样操作能存储100多万行的xlsx文件
Apr 16 Python
kali中python版本的切换方法
Jul 11 Python
python英语单词测试小程序代码实例
Sep 09 Python
python如何提取英语pdf内容并翻译
Mar 03 Python
Pycharm中安装Pygal并使用Pygal模拟掷骰子(推荐)
Apr 08 Python
numpy中生成随机数的几种常用函数(小结)
Aug 18 Python
Django集成MongoDB实现过程解析
Dec 01 Python
Pycharm 设置默认解释器路径和编码格式的操作
Feb 05 Python
Python基础教程,Python入门教程(超详细)
Jun 24 Python
人工智能最火编程语言 Python大战Java!
Nov 13 #Python
Python随机生成均匀分布在单位圆内的点代码示例
Nov 13 #Python
python、java等哪一门编程语言适合人工智能?
Nov 13 #Python
K-means聚类算法介绍与利用python实现的代码示例
Nov 13 #Python
python通过opencv实现批量剪切图片
Nov 13 #Python
flask + pymysql操作Mysql数据库的实例
Nov 13 #Python
django之session与分页(实例讲解)
Nov 13 #Python
You might like
PHP中获取时间的下一周下个月的方法
2014/03/18 PHP
php跨站攻击实例分析
2014/10/28 PHP
PHP Yii框架之表单验证规则大全
2015/11/16 PHP
详解PHP实现定时任务的五种方法
2016/07/25 PHP
PHP正则表达式匹配替换与分割功能实例浅析
2017/02/04 PHP
用javascript实现给图片加链接
2007/08/15 Javascript
让firefox支持IE的一些方法的javascript扩展函数代码
2010/01/02 Javascript
jQuery自定义事件的简单实现代码
2014/01/27 Javascript
javascript 动态创建表格的2种方法总结
2015/03/04 Javascript
JQuery实现超链接鼠标提示效果的方法
2015/06/10 Javascript
Javascript实现获取及设置光标位置的方法
2015/07/21 Javascript
jquery+html5烂漫爱心表白动画代码分享
2015/08/24 Javascript
JavaScript基本类型值-Number类型
2017/02/24 Javascript
非常实用的vue导航钩子
2017/03/20 Javascript
详解Vue2 SSR 缓存 Api 数据
2017/11/20 Javascript
利用angular、react和vue实现相同的面试题组件
2018/02/19 Javascript
JavaScript setInterval()与setTimeout()计时器
2019/12/27 Javascript
jQuery实现手风琴效果(蒙版)
2020/01/11 jQuery
javascript实现移动端轮播图
2020/12/09 Javascript
[02:17]DOTA2亚洲邀请赛 RAVE战队出场宣传片
2015/02/07 DOTA
[01:29:46]DOTA2上海特级锦标赛C组资格赛#1 OG VS LGD第二局
2016/02/27 DOTA
python生成器generator用法实例分析
2015/06/04 Python
判断网页编码的方法python版
2016/08/12 Python
python3 面向对象__类的内置属性与方法的实例代码
2018/11/09 Python
Python正则表达式和re库知识点总结
2019/02/11 Python
Python Web框架之Django框架文件上传功能详解
2019/08/16 Python
python求最大公约数和最小公倍数的简单方法
2020/02/13 Python
jenkins+python自动化测试持续集成教程
2020/05/12 Python
世界上最大的售后摩托车零配件超市:J&P Cycles
2017/12/08 全球购物
zooplus意大利:在线宠物商店
2019/08/07 全球购物
园林毕业生自我鉴定范文
2013/12/29 职场文书
领导干部培训感言
2014/01/23 职场文书
《九寨沟》教学反思
2014/04/08 职场文书
小学竞选班长演讲稿
2014/09/09 职场文书
死者家属慰问信
2015/03/24 职场文书
新闻报道稿范文
2015/07/23 职场文书