tensorflow pb to tflite 精度下降详解


Posted in Python onMay 25, 2020

之前希望在手机端使用深度模型做OCR,于是尝试在手机端部署tensorflow模型,用于图像分类。

思路主要是想使用tflite部署到安卓端,但是在使用tflite的时候发现模型的精度大幅度下降,已经不能支持业务需求了,最后就把OCR模型调用写在服务端了,但是精度下降的原因目前也没有找到,现在这里记录一下。

工作思路:

1.训练图像分类模型;2.模型固化成pb;3.由pb转成tflite文件;

但是使用python 的tf interpreter 调用tflite文件就已经出现精度下降的问题,android端部署也是一样。

1.网络结构

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
 
import tensorflow as tf
slim = tf.contrib.slim
 
def ttnet(images, num_classes=10, is_training=False,
   dropout_keep_prob=0.5,
   prediction_fn=slim.softmax,
   scope='TtNet'):
 end_points = {}
 
 with tf.variable_scope(scope, 'TtNet', [images, num_classes]):
 net = slim.conv2d(images, 32, [3, 3], scope='conv1')
 # net = slim.conv2d(images, 64, [3, 3], scope='conv1_2')
 net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
 net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='bn1')
 # net = slim.conv2d(net, 128, [3, 3], scope='conv2_1')
 net = slim.conv2d(net, 64, [3, 3], scope='conv2')
 net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
 net = slim.conv2d(net, 128, [3, 3], scope='conv3')
 net = slim.max_pool2d(net, [2, 2], 2, scope='pool3')
 net = slim.conv2d(net, 256, [3, 3], scope='conv4')
 net = slim.max_pool2d(net, [2, 2], 2, scope='pool4')
 net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='bn2')
 # net = slim.conv2d(net, 512, [3, 3], scope='conv5')
 # net = slim.max_pool2d(net, [2, 2], 2, scope='pool5')
 net = slim.flatten(net)
 end_points['Flatten'] = net
 
 # net = slim.fully_connected(net, 1024, scope='fc3')
 net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
      scope='dropout3')
 logits = slim.fully_connected(net, num_classes, activation_fn=None,
         scope='fc4') 
 end_points['Logits'] = logits
 end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
 
 return logits, end_points
ttnet.default_image_size = 28
 
def ttnet_arg_scope(weight_decay=0.0):
 with slim.arg_scope(
  [slim.conv2d, slim.fully_connected],
  weights_regularizer=slim.l2_regularizer(weight_decay),
  weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
  activation_fn=tf.nn.relu) as sc:
 return sc

基于slim,由于是一个比较简单的分类问题,网络结构也很简单,几个卷积加池化。

测试效果是很棒的。真实样本测试集能达到99%+的准确率。

2.模型固化,生成pb文件

#coding:utf-8
 
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import nets_factory
import cv2
import os
import numpy as np
from datasets import dataset_factory
from preprocessing import preprocessing_factory
from tensorflow.python.platform import gfile
slim = tf.contrib.slim
#todo
#support arbitray image size and num_class
 
tf.app.flags.DEFINE_string(
 'checkpoint_path', '/tmp/tfmodel/',
 'The directory where the model was written to or an absolute path to a '
 'checkpoint file.')
 
tf.app.flags.DEFINE_string(
 'model_name', 'inception_v3', 'The name of the architecture to evaluate.')
tf.app.flags.DEFINE_string(
 'preprocessing_name', None, 'The name of the preprocessing to use. If left '
 'as `None`, then the model_name flag is used.')
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer(
 'eval_image_size', None, 'Eval image size')
tf.app.flags.DEFINE_integer(
 'eval_image_height', None, 'Eval image height')
tf.app.flags.DEFINE_integer(
 'eval_image_width', None, 'Eval image width')
tf.app.flags.DEFINE_string(
 'export_path', './ttnet_1.0_37_32.pb', 'the export path of the pd file')
FLAGS = tf.app.flags.FLAGS
NUM_CLASSES = 37
 
def main(_):
 network_fn = nets_factory.get_network_fn(
  FLAGS.model_name,
  num_classes=NUM_CLASSES,
  is_training=False)
 # pre_image = tf.placeholder(tf.float32, [None, None, 3], name='input_data')
 # preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
 # image_preprocessing_fn = preprocessing_factory.get_preprocessing(
 #  preprocessing_name,
 #  is_training=False)
 # image = image_preprocessing_fn(pre_image, FLAGS.eval_image_height, FLAGS.eval_image_width)
 # images2 = tf.expand_dims(image, 0)
 images2 = tf.placeholder(tf.float32, (None,32, 32, 3),name='input_data')
 logits, endpoints = network_fn(images2)
 with tf.Session() as sess:
 output = tf.identity(endpoints['Predictions'],name="output_data")
 with gfile.GFile(FLAGS.export_path, 'wb') as f:
  f.write(sess.graph_def.SerializeToString())
 
if __name__ == '__main__':
 tf.app.run()

3.生成tflite文件

import tensorflow as tf
 
graph_def_file = "/datastore1/Colonist_Lord/Colonist_Lord/workspace/models/model_files/passport_model_with_tflite/ocr_frozen.pb"
input_arrays = ["input_data"]
output_arrays = ["output_data"]
 
converter = tf.lite.TFLiteConverter.from_frozen_graph(
 graph_def_file, input_arrays, output_arrays)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)

使用pb文件进行测试,效果正常;使用tflite文件进行测试,精度下降严重。下面附上pb与tflite测试代码。

pb测试代码

with tf.gfile.GFile(graph_filename, "rb") as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 
with tf.Graph().as_default() as graph:
 tf.import_graph_def(graph_def)
 input_node = graph.get_tensor_by_name('import/input_data:0')
 output_node = graph.get_tensor_by_name('import/output_data:0')
 with tf.Session() as sess:
  for image_file in image_files:
   abs_path = os.path.join(image_folder, image_file)
   img = cv2.imread(abs_path).astype(np.float32)
   img = cv2.resize(img, (int(input_node.shape[1]), int(input_node.shape[2])))
   output_data = sess.run(output_node, feed_dict={input_node: [img]})
   index = np.argmax(output_data)
   label = dict_laebl[index]
   dst_floder = os.path.join(result_folder, label)
   if not os.path.exists(dst_floder):
    os.mkdir(dst_floder)
   cv2.imwrite(os.path.join(dst_floder, image_file), img)
   count += 1

tflite测试代码

model_path = "converted_model.tflite" #"/datastore1/Colonist_Lord/Colonist_Lord/data/passport_char/ocr.tflite"
interpreter = tf.contrib.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
 
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
for image_file in image_files:
 abs_path = os.path.join(image_folder,image_file)
 img = cv2.imread(abs_path).astype(np.float32)
 img = cv2.resize(img, tuple(input_details[0]['shape'][1:3]))
 # input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
 interpreter.set_tensor(input_details[0]['index'], [img])
 
 interpreter.invoke()
 output_data = interpreter.get_tensor(output_details[0]['index'])
 index = np.argmax(output_data)
 label = dict_laebl[index]
 dst_floder = os.path.join(result_folder,label)
 if not os.path.exists(dst_floder):
  os.mkdir(dst_floder)
 cv2.imwrite(os.path.join(dst_floder,image_file),img)
 count+=1

最后也算是绕过这个问题解决了业务需求,后面有空的话,还是会花时间研究一下这个问题。

如果有哪个大佬知道原因,希望不吝赐教。

补充知识:.pb 转tflite代码,使用量化,减小体积,converter.post_training_quantize = True

import tensorflow as tf

path = "/home/python/Downloads/a.pb" # pb文件位置和文件名
inputs = ["input_images"] # 模型文件的输入节点名称
classes = ['feature_fusion/Conv_7/Sigmoid','feature_fusion/concat_3'] # 模型文件的输出节点名称
# converter = tf.contrib.lite.TocoConverter.from_frozen_graph(path, inputs, classes, input_shapes={'input_images':[1, 320, 320, 3]})
converter = tf.lite.TFLiteConverter.from_frozen_graph(path, inputs, classes,
              input_shapes={'input_images': [1, 320, 320, 3]})
converter.post_training_quantize = True
tflite_model = converter.convert()
open("/home/python/Downloads/aNew.tflite", "wb").write(tflite_model)

以上这篇tensorflow pb to tflite 精度下降详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
一个超级简单的python web程序
Sep 11 Python
Pyhton中防止SQL注入的方法
Feb 05 Python
Python多线程爬虫简单示例
Mar 04 Python
Python实现的递归神经网络简单示例
Aug 11 Python
Pycharm以root权限运行脚本的方法
Jan 19 Python
PyQt5实现让QScrollArea支持鼠标拖动的操作方法
Jun 19 Python
一篇文章弄懂Python中所有数组数据类型
Jun 23 Python
有趣的Python图片制作之如何用QQ好友头像拼接出里昂
Apr 22 Python
python--shutil移动文件到另一个路径的操作
Jul 13 Python
Python实现删除某列中含有空值的行的示例代码
Jul 20 Python
pytorch查看网络参数显存占用量等操作
May 12 Python
pytorch MSELoss计算平均的实现方法
May 12 Python
Python HTMLTestRunner测试报告view按钮失效解决方案
May 25 #Python
python用opencv完成图像分割并进行目标物的提取
May 25 #Python
Pytorch转tflite方式
May 25 #Python
Python HTMLTestRunner库安装过程解析
May 25 #Python
Anaconda+vscode+pytorch环境搭建过程详解
May 25 #Python
5行Python代码实现图像分割的步骤详解
May 25 #Python
Win10用vscode打开anaconda环境中的python出错问题的解决
May 25 #Python
You might like
使用PHP制作新闻系统的思路
2006/10/09 PHP
PHP:风雨欲来 路在何方?
2006/10/09 PHP
php集成环境xampp中apache无法启动问题解决方案
2014/11/18 PHP
Zend Framework处理Json数据方法详解
2016/12/09 PHP
PHP基于DateTime类解决Unix时间戳与日期互转问题【针对1970年前及2038年后时间戳】
2018/06/13 PHP
Extjs学习笔记之九 数据模型(上)
2010/01/11 Javascript
jQuery :nth-child前有无空格的区别分析
2011/07/11 Javascript
javascript中length属性的探索
2011/07/31 Javascript
Extjs实现进度条的两种便捷方式
2013/09/26 Javascript
JS中数组Array的用法示例介绍
2014/02/20 Javascript
PHPMyAdmin导入时提示文件大小超出PHP限制的解决方法
2015/03/30 Javascript
javascript 广告移动特效的实现代码
2016/06/25 Javascript
JS 拦截全局ajax请求实例解析
2016/11/29 Javascript
JavaScript中闭包的详解
2017/04/01 Javascript
基于react组件之间的参数传递(详解)
2017/09/05 Javascript
深入理解React高阶组件
2017/09/28 Javascript
微信小程序canvas实现签名功能
2021/01/19 Javascript
Python生成随机数的方法
2014/01/14 Python
Python multiprocessing模块中的Pipe管道使用实例
2015/04/11 Python
使用python实现个性化词云的方法
2017/06/16 Python
用python结合jieba和wordcloud实现词云效果
2017/09/05 Python
Python编程使用*解包和itertools.product()求笛卡尔积的方法
2017/12/18 Python
Python的SimpleHTTPServer模块用处及使用方法简介
2018/01/22 Python
python rsa-oaep加密的示例代码
2020/09/23 Python
python3通过subprocess模块调用脚本并和脚本交互的操作
2020/12/05 Python
日本网路线上商品代购服务:转送JAPAN
2016/08/05 全球购物
美国电子元器件分销商:Newark element14
2018/01/13 全球购物
来自圣地亚哥的实惠太阳镜:Knockaround
2018/08/27 全球购物
Vans奥地利官方网站:美国原创极限运动潮牌
2018/09/30 全球购物
婚鞋、新娘鞋、礼服鞋、童鞋:Nina Shoes
2019/09/04 全球购物
高级工程师岗位职责
2013/12/15 职场文书
淘宝好评语大全
2014/05/05 职场文书
公司离职证明标准样本
2014/10/05 职场文书
大学迎新生标语
2014/10/06 职场文书
高效课堂教学反思
2016/02/24 职场文书
java实现web实时消息推送的七种方案
2022/07/23 Java/Android