纯python实现机器学习之kNN算法示例


Posted in Python onMarch 01, 2018

前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。

k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。

原理

kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。

具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。

输入新的数据,将该数据和训练样本集汇中每一个样本比较,找到距离最近的k个,在k个数据中,出现次数做多的那个分类,即可作为新数据的分类。

纯python实现机器学习之kNN算法示例

如上图:

需要判断绿色是什么形状。当k等于3时,属于三角。当k等于5是,属于方形。

因此该方法具有一下特点:

  1. 监督学习:训练样本集中含有分类信息
  2. 算法简单, 易于理解实现
  3. 结果收到k值的影响,k一般不超过20.
  4. 计算量大,需要计算与样本集中每个样本的距离。
  5. 训练样本集不平衡导致结果不准确问题

接下来用oython 做个简单实现, 并且尝试用于约会网站配对。

python简单实现

def classify(inX, dataSet, labels, k):
  """
  定义knn算法分类器函数
  :param inX: 测试数据
  :param dataSet: 训练数据
  :param labels: 分类类别
  :param k: k值
  :return: 所属分类
  """

  dataSetSize = dataSet.shape[0] #shape(m, n)m列n个特征
  diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances ** 0.5 #欧式距离
  sortedDistIndicies = distances.argsort() #排序并返回index

  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #default 0

  sortedClassCount = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClassCount[0][0]

算法的步骤上面有详细的介绍,上面的计算是矩阵运算,下面一个函数是代数运算,做个比较理解。

def classify_two(inX, dataSet, labels, k):
  m, n = dataSet.shape  # shape(m, n)m列n个特征
  # 计算测试数据到每个点的欧式距离
  distances = []
  for i in range(m):
    sum = 0
    for j in range(n):
      sum += (inX[j] - dataSet[i][j]) ** 2
    distances.append(sum ** 0.5)

  sortDist = sorted(distances)

  # k 个最近的值所属的类别
  classCount = {}
  for i in range(k):
    voteLabel = labels[ distances.index(sortDist[i])]
    classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # 0:map default
  sortedClass = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClass[0][0]

有了上面的分类器,下面进行最简单的实验来预测一下:

def createDataSet():
  group = np.array([[1, 1.1], [1, 1], [0, 0], [0, 0.1]])
  labels = ['A', 'A', 'B', 'B']
  return group, labels

上面是一个简单的训练样本集。

if __name__ == '__main__':
  dataSet, labels = createDataSet()
  r = classify_two([0, 0.2], dataSet, labels, 3)
  print(r)

执行上述函数:可以看到输出B, [0 ,0.2]应该归入b类。

上面就是一个最简单的kNN分类器,下面有个例子。

kNN用于判断婚恋网站中人的受欢迎程度

训练样本集中部分数据如下:

40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1

第一列表示每年获得的飞行常客里程数, 第二列表示玩视频游戏所耗时间百分比, 第三类表示每周消费的冰淇淋公升数。第四列表示分类结果,1, 2, 3 分别是 不喜欢,魅力一般,极具魅力。

将数据转换成numpy。

# 文本转换成numpy
def file2matrix(filepath="datingSet.csv"):
  dataSet = np.loadtxt(filepath)
  returnMat = dataSet[:, 0:-1]
  classlabelVector = dataSet[:, -1:]
  return returnMat, classlabelVector

首先对数据有个感知,知道是哪些特征影响分类,进行可视化数据分析。

# 2, 3列数据进行分析
def show_2_3_fig():
  data, cls = file2matrix()
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.scatter(data[:, 1], data[: ,2], c=cls)
  plt.xlabel("playing game")
  plt.ylabel("Icm Cream")
  plt.show()

纯python实现机器学习之kNN算法示例

如上图可以看到并无明显的分类。

纯python实现机器学习之kNN算法示例

纯python实现机器学习之kNN算法示例

可以看到不同的人根据特征有明显的区分。因此可以使用kNN算法来进行分类和预测。

由于后面要用到距离比较,因此数据之前的影响较大, 比如飞机里程和冰淇淋数目之间的差距太大。因此需要对数据进行归一化处理。

# 数据归一化
def autoNorm(dataSet):
  minVal = dataSet.min(0)
  maxVal = dataSet.max(0)
  ranges = maxVal - minVal

  normDataSet = np.zeros(dataSet.shape)
  m, n = dataSet.shape # 行, 特征
  normDataSet = dataSet - minVal
  normDataSet = normDataSet / ranges
  return normDataSet, ranges, minVal

衡量算法的准确性

knn算法可以用正确率或者错误率来衡量。错误率为0,表示分类很好。

因此可以将训练样本中的10%用于测试,90%用于训练。

# 定义测试算法的函数
def datingClassTest(h=0.1):
  hoRatio = h
  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  m, n = normMat.shape
  numTestVecs = int(m * hoRatio) #测试数据行数
  errorCount = 0 # 错误分类数


  # 用前10%的数据做测试
  for i in range(numTestVecs):
    classifierResult = classify(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
    # print('the classifier came back with: %d,the real answer is: %d' % (int(classifierResult), int(datingLabels[i])))
    if classifierResult != datingLabels[i]:
      errorCount += 1
  print("the total error rate is: %f" % (errorCount / float(numTestVecs)))

调整不同的测试比例,对比结果。

使用knn进行预测。

有了训练样本和分类器,对新数据可以进行预测。模拟数据并进行预测如下:

# 简单进行预测
def classifypersion():
  resultList = ["none", 'not at all','in small doses','in large doses']
  # 模拟数据
  ffmiles = 15360
  playing_game = 8.545204
  ice_name = 1.340429

  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  inArr = np.array([ffmiles, playing_game, ice_name])
  # 预测数据归一化
  inArr = (inArr - minVals) / ranges
  classifierResult = classify(inArr, normMat, datingLabels, 3)
  print(resultList[int(classifierResult)])

可以看到基本的得到所属的分类。

完成代码和数据请参考:

github:kNN

总结

  1. kNN
  2. 监督学习
  3. 数据可视化
  4. 数据归一化,不影响计算

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python解析模块(ConfigParser)使用方法
Dec 10 Python
Python守护进程(daemon)代码实例
Mar 06 Python
利用Python绘制MySQL数据图实现数据可视化
Mar 30 Python
Python中列表list以及list与数组array的相互转换实现方法
Sep 22 Python
python模拟表单提交登录图书馆
Apr 27 Python
python实现ID3决策树算法
Aug 29 Python
Python下简易的单例模式详解
Apr 08 Python
Python: tkinter窗口屏幕居中,设置窗口最大,最小尺寸实例
Mar 04 Python
Python接口测试数据库封装实现原理
May 09 Python
python 通过文件夹导入包的操作
Jun 01 Python
利用python查看数组中的所有元素是否相同
Jan 08 Python
Python万能模板案例之matplotlib绘制甘特图
Apr 13 Python
用python与文件进行交互的方法
Mar 01 #Python
python爬虫爬取快手视频多线程下载功能
Feb 28 #Python
python爬取m3u8连接的视频
Feb 28 #Python
python实现m3u8格式转换为mp4视频格式
Feb 28 #Python
浅谈Python中的私有变量
Feb 28 #Python
python中logging包的使用总结
Feb 28 #Python
深入理解Python爬虫代理池服务
Feb 28 #Python
You might like
eclipse php wamp配置教程
2016/06/30 PHP
javascript 可以拖动的DIV(二)
2009/06/26 Javascript
Jquery AutoComplete自动完成 的使用方法实例
2010/03/19 Javascript
DLL+ ActiveX控件+WEB页面调用例子
2010/08/07 Javascript
用svg制作富有动态的tooltip
2015/07/17 Javascript
javascript文件加载管理简单实现方法
2015/07/25 Javascript
剖析Node.js异步编程中的回调与代码设计模式
2016/02/16 Javascript
使用JavaScript实现弹出层效果的简单实例
2016/05/31 Javascript
Angularjs在初始化未完毕时出现闪烁问题的解决方法分析
2016/08/05 Javascript
手机端实现Bootstrap简单图片轮播效果
2016/10/13 Javascript
bootstrap模态框实现拖拽效果
2016/12/14 Javascript
浅谈vue路径优化之resolve
2017/10/13 Javascript
使用JavaScript中的lodash编写双色球效果
2018/06/24 Javascript
JS实现的全选、全不选及反选功能【案例】
2019/02/19 Javascript
vue滚动固定顶部及修改样式的实例代码
2019/05/30 Javascript
vue项目实现设置根据路由高亮对应的菜单项操作
2020/08/06 Javascript
OpenLayer3自定义测量控件MeasureTool
2020/09/28 Javascript
Node.js中的异步生成器与异步迭代详解
2021/01/31 Javascript
[54:02]2018DOTA2亚洲邀请赛 4.1 小组赛 B组 IG vs VGJ.T
2018/04/03 DOTA
Python设置Socket代理及实现远程摄像头控制的例子
2015/11/13 Python
通过5个知识点轻松搞定Python的作用域
2016/09/09 Python
用Python画一个LinkinPark的logo代码实例
2019/09/10 Python
python向图片里添加文字
2019/11/26 Python
如何用OpenCV -python3实现视频物体追踪
2019/12/04 Python
Django REST 异常处理详解
2020/07/15 Python
Python读写csv文件流程及异常解决
2020/10/20 Python
解决virtualenv -p python3 venv报错的问题
2021/02/05 Python
娇韵诗加拿大官网:Clarins加拿大
2017/11/20 全球购物
英国顶级足球鞋的领先零售商:Lovell Soccer
2019/08/27 全球购物
致跳远、跳高运动员广播稿
2014/01/09 职场文书
《雨霖铃》听课反思
2014/02/13 职场文书
小学运动会口号
2014/06/07 职场文书
建设办主任四风问题整改思路和措施
2014/09/20 职场文书
个人总结怎么写
2015/02/26 职场文书
给朋友的道歉短信
2015/05/12 职场文书
2015年小学实验室工作总结
2015/07/28 职场文书