python使用Pandas库提升项目的运行速度过程详解


Posted in Python onJuly 12, 2019

前言

如果你从事大数据工作,用Python的Pandas库时会发现很多惊喜。Pandas在数据科学和分析领域扮演越来越重要的角色,尤其是对于从Excel和VBA转向Python的用户。

所以,对于数据科学家,数据分析师,数据工程师,Pandas是什么呢?Pandas文档里的对它的介绍是:

“快速、灵活、和易于理解的数据结构,以此让处理关系型数据和带有标签的数据时更简单直观。”

快速、灵活、简单和直观,这些都是很好的特性。当你构建复杂的数据模型时,不需要再花大量的开发时间在等待数据处理的任务上了。这样可以将更多的精力集中去理解数据。

但是,有人说Pandas慢…

第一次使用Pandas时,有人评论说:Pandas是很棒的解析数据的工具,但是Pandas太慢了,无法用于统计建模。第一次使用的时候,确实如此,真的慢。

但是,Pandas是建立在NumPy数组结构之上的。所以它的很多操作通过NumPy或者Pandas自带的扩展模块编写,这些模块用Cython编写并编译到C,并且在C上执行。因此,Pandas不也应该很快的吗?

事实上,使用姿势正确的话,Pandas确实很快。

在使用Pandas时,使用纯“python”式代码并不是最效率的选择。和NumPy一样,Pandas专为向量化操作而设计,它可在一次扫描中完成对整列或者数据集的操作。而单独处理每个单元格或某一行这种遍历的行为,应该作为备用选择。

跟大家说明一下,本Python学习教程不是引导如何过度优化Pandas代码。因为Pandas在正确的使用下已经很快了。此外,优化代码和编写清晰的代码之间的差异是巨大的。

这是一篇关于“如何充分利用Pandas内置的强大且易于上手的特性”的指引。此外,你将学习到一些实用的节省时间的技巧。在这篇Python学习教程中,你将学习到:

  • ·使用datetime时间序列数据的优势
  • ·处理批量计算更效率的方法
  • ·利用HDFStore节省时间

这篇文章,耗电量时间序列数据将被用于演示本主题。加载数据后,我们将逐步了解更有效率的方法取得最终结果。对于Pandas用户而言,会有多种方法预处理数据。但是这不意味着所有方法都适用于更大、更复杂的数据集。

【注】

【工具】

Python 3、Pandas 0.23.1

任务:

本例使用能源消耗的时间序列数据计算一年能源的总成本。由于不同时间段的电价不同,因此需要将各时段的耗电量乘上对应时段的电价。

从CSV文件中可以读取到两列数据:日期时间和电力消耗(千瓦)

python使用Pandas库提升项目的运行速度过程详解

每行数据中都包含每小时耗电量数据,因此整年会产生8760(356×24)行数据。每行的小时数据表示计算的开始时间,因此1/1/13 0:00的数据指1月1号第1个小时的耗电量数据。

用Datetime类节省时间

首先用Pandas的一个I/O函数读取CSV文件:

>>z import pandas as pd
>>> pd.__version__
'0.23.1'
>>> df = pd.read_csv('文件路径')
>>> df.head()
 date_time energy_kwh
0 1/1/13 0:00 0.586
1 1/1/13 1:00 0.580
2 1/1/13 2:00 0.572
3 1/1/13 3:00 0.596
4 1/1/13 4:00 0.592

这结果看上去挺好,但是有个小问题。Pandas 和NumPy有个数据类型dtypes概念。假如不指定参数的话,date_time这列将会被归为默认类object:

>>> df.dtypes
date_time object
energy_kwh float64
dtype: object
>>> type(df.iat[0, 0])
str

默认类object不仅是str类的容器,而且不能齐整的适用于某一种数据类型。字符串str类型的日期在数据处理中是非常低效的,同时内存效率也是低下的。

为了处理时间序列数据,需要将date_time列格式化为datetime类的数组,Pandas 称这种数据类型为时间戳Timestamp。用Pandas进行格式化相当简单:

>>> df['date_time'] = pd.to_datetime(df['date_time'])
>>> df['date_time'].dtype
datetime64[ns]

至此,新的df和CSV file内容基本一样。它有两列和一个索引。

>>> df.head()
 date_time energy_kwh
0 2013-01-01 00:00:00 0.586
1 2013-01-01 01:00:00 0.580
2 2013-01-01 02:00:00 0.572
3 2013-01-01 03:00:00 0.596
4 2013-01-01 04:00:00 0.592

上述代码简单且易懂,但是有执行速度如何呢?这里我们使用了timing装饰器,这里将装饰器称为@timeit。这个装饰器模仿了Python标准库中的timeit.repeat() 方法,但是它可以返回函数的结果,并且打印多次重复调试的平均运行时间。Python的timeit.repeat() 只返回调试时间结果,但不返回函数结果。

将装饰器@timeit放在函数上方,每次运行函数时可以同时打印该函数的运行时间。

>>> @timeit(repeat=3, number=10)
... def convert(df, column_name):
... return pd.to_datetime(df[column_name])
>>> # Read in again so that we have `object` dtype to start 
>>> df['date_time'] = convert(df, 'date_time')
Best of 3 trials with 10 function calls per trial:
Function `convert` ran in average of 1.610 seconds.

看结果如何?处理8760行数据耗时1.6秒。这似乎没啥毛病。但是当处理更大的数据集时,比如计算更高频的电费数据,给出每分钟的电费数据去计算一整年的总成本。数据量会比现在多60倍,这意味着你需要大约90秒去等待输出的结果。这就有点忍不了了。

实际上,作者工作中需要分析330个站点过去10年的每小时电力数据。按上边的方法,需要88分钟完成时间列的格式化转换。

有更快的方法吗?一般来说,Pandas可以更快的转换你的数据。在本例中,使用格式参数将csv文件中特定的时间格式传入Pandas的to_datetime中,可以大幅的提升处理效率。

>>> @timeit(repeat=3, number=100)
>>> def convert_with_format(df, column_name):
... return pd.to_datetime(df[column_name],
... format='%d/%m/%y %H:%M')
Best of 3 trials with 100 function calls per trial:
Function `convert_with_format` ran in average of 0.032 seconds.

新的结果如何?0.032秒,速度提升了50倍!所以之前330站点的数据处理时间节省了86分钟。

一个需要注意的细节是CSV中的时间格式不是ISO 8601格式:YYYY-mm-dd HH:MM。如果没有指定格式,Pandas将使用dateuil包将每个字符串格式的日期格式化。相反,如果原始的时间格式已经是ISO 8601格式了,Pandas可以快速的解析日期。

【注】Pandas的read_csv()方法也提供了解析时间的参数。详见parse_dates,infer_datetime_format,和date_parser参数。

遍历

日期时间已经完成格式化,现在准备开始计算电费了。由于每个时段的电价不同,因此需要将对应的电价映射到各个时段。此例中,电价收费标准如下:

python使用Pandas库提升项目的运行速度过程详解

如果电价全天统一价28美分每千瓦每小时,大多数人都知道可以一行代码实现电费的计算:

>>> df['cost_cents'] = df['energy_kwh'] * 28

这行代码将创建一行新列,该列包含当前时段的电费:

date_time energy_kwh cost_cents
0 2013-01-01 00:00:00 0.586 16.408
1 2013-01-01 01:00:00 0.580 16.240
2 2013-01-01 02:00:00 0.572 16.016
3 2013-01-01 03:00:00 0.596 16.688
4 2013-01-01 04:00:00 0.592 16.576
# ...

但是电费的计算取决于不用的时段对应的电价。这里许多人会用非Pandas式的方式:用遍历去完成这类计算。

在本文中,将从最基础的解决方案开始介绍,并逐步提供充分利用Pandas性能优势的Python式解决方案。

但是对于Pandas库来说,什么是Python式方案?这里是指相比其他友好性较差的语言如C++或者Java,它们已经习惯了“运用遍历”去编程。

如果不熟悉Pandas,大多数人会像以前一样使用继续遍历方法。这里继续使用@timeit装饰器来看看这种方法的效率。

首先,创建一个不同时段电价的函数:

def apply_tariff(kwh, hour):
 """电价函数""" 
 if 0 <= hour < 7:
 rate = 12
 elif 7 <= hour < 17:
 rate = 20
 elif 17 <= hour < 24:
 rate = 28
 else:
 raise ValueError(f'Invalid hour: {hour}')
 return rate * kwh

如下代码就是一种常见的遍历模式:

>>> # 注意:不要尝试该函数!
>>> @timeit(repeat=3, number=100)
... def apply_tariff_loop(df):
... """用遍历计算成本,将结果并入到df中"""
... energy_cost_list = []
... for i in range(len(df)):
... # 获取每个小时的耗电量
... energy_used = df.iloc[i]['energy_kwh']
... hour = df.iloc[i]['date_time'].hour
... energy_cost = apply_tariff(energy_used, hour)
... energy_cost_list.append(energy_cost)
... df['cost_cents'] = energy_cost_list
... 
>>> apply_tariff_loop(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_loop` ran in average of 3.152 seconds.

对于没有用过Pandas的Python用户来说,这种遍历很正常:对于每个x,再给定条件y下,输出z。

但是这种遍历很笨重。可以将上述例子视为Pandas用法的“反面案例”,原因如下几个。

首先,它需要初始化一个列表用于存储输出结果。

其次,它用了隐晦难懂的类range(0, len(df))去做循环,接着在应用apply_tariff()函数后,还必须将结果增加到列表中用于生成新的DataFrame列。

最后,它还使用链式索引df.iloc[i]['date_time'],这可能会生产出很多bugs。

这种遍历方式最大的问题在于计算的时间成本。对于8760行数据,花了3秒钟完成遍历。下面,来看看一些基于Pandas数据结构的迭代方案。

用.itertuples()和.iterrow()遍历

还有其他办法吗?

Pandas实际上通过引入DataFrame.itertuples()和DataFrame.iterrows()方法使得for i in range(len(df))语法冗余。这两种都是产生一次一行的生成器方法。

.itertuples()为每行生成一个nametuple类,行的索引值作为nametuple类的第一个元素。nametuple是来自Python的collections模块的数据结构,该结构和Python中的元组类似,但是可以通过属性查找可访问字段。

.iterrows()为DataFrame的每行生成一组由索引和序列组成的元组。

与.iterrows()相比,.itertuples()运行速度会更快一些。本例中使用了.iterrows()方法,因为很多读者很可能没有用过nametuple。

>>> @timeit(repeat=3, number=100)
... def apply_tariff_iterrows(df):
... energy_cost_list = []
... for index, row in df.iterrows():
... #获取每个小时的耗电量
... energy_used = row['energy_kwh']
... hour = row['date_time'].hour
... # 增加成本数据到list列表
... energy_cost = apply_tariff(energy_used, hour)
... energy_cost_list.append(energy_cost)
... df['cost_cents'] = energy_cost_list
...
>>> apply_tariff_iterrows(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_iterrows` ran in average of 0.713 seconds.

取得一些不错的进步。语法更清晰,少了行值i的引用,整体更具有可读性了。在时间收益方面,几乎快了5倍!

但是,仍然有很大的改进空间。由于仍然在使用for遍历,意味着每循环一次都需要调用一次函数,而这些本可以在速度更快的Pandas内置架构中完成。

Pandas的.apply()

可以用.apply()方法替代.iterrows()方法提升效率。Pandas的.apply()方法可以传入可调用的函数并且应用于DataFrame的轴上,即所有行或列。此例中,借助lambda功能将两列数据传入apply_tariff():

>>> @timeit(repeat=3, number=100)
... def apply_tariff_withapply(df):
... df['cost_cents'] = df.apply(
... lambda row: apply_tariff(
... kwh=row['energy_kwh'],
... hour=row['date_time'].hour),
... axis=1)
...
>>> apply_tariff_withapply(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_withapply` ran in average of 0.272 seconds.

.apply()的语法优势很明显,代码行数少了,同时代码也更易读了。运行速度方面,这与.iterrows()方法相比节省了大约一半时间。

但是,这还不够快。一个原因是.apply()内部尝试在Cython迭代器上完成循环。但是在这种情况下,lambda中传递了一些无法在Cython中处理的输入,因此调用.apply()时仍然不够快。

如果使用.apply()在330个站点的10年数据上,这大概得花15分钟的处理时间。假如这个计算仅仅是一个大型模型的一小部分,那么还需要更多的提升。下面的向量化操作可以做到这点。

用.isin()筛选数据

之前看到的如果只有单一电价,可以将所有电力消耗数据乘以该价格df['energy_kwh'] * 28。这种操作就是一种向量化操作的一个用例,这是Pandas中最快的方式。

但是,在Pandas中如何将有条件的计算应用在向量化操作中呢?一种方法是,根据条件将DataFrame进行筛选并分组和切片,然后对每组数据进行对应的向量化操作。

在下面的例子中,将展示如何使用Pandas中的.isin()方法筛选行,然后用向量化操作计算对应的电费。在此操作前,将date_time列设置为DataFrame索引便于向量化操作:

df.set_index('date_time', inplace=True)
@timeit(repeat=3, number=100)
def apply_tariff_isin(df):
 # 定义每个时段的布尔型数组(Boolean)
 peak_hours = df.index.hour.isin(range(17, 24))
 shoulder_hours = df.index.hour.isin(range(7, 17))
 off_peak_hours = df.index.hour.isin(range(0, 7)) 
 # 计算不同时段的电费
 df.loc[peak_hours, 'cost_cents'] = df.loc[peak_hours, 'energy_kwh'] * 28
 df.loc[shoulder_hours,'cost_cents'] = df.loc[shoulder_hours, 'energy_kwh'] * 20
 df.loc[off_peak_hours,'cost_cents'] = df.loc[off_peak_hours, 'energy_kwh'] * 12

执行结果如下:

>>> apply_tariff_isin(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_isin` ran in average of 0.010 seconds.

要理解这段代码,也许需要先了解.isin()方法返回的是布尔值,如下:

[False, False, False, ..., True, True, True]

这些布尔值标记了DataFrame日期时间索引所在的时段。然后,将这些布尔值数组传给DataFrame的.loc索引器时,会返回一个仅包含该时段的DataFrame切片。最后,将该切片数组乘以对应的时段的费率即可。

这与之前的遍历方法相比如何?

首先,不需要apply_tariff()函数了,因为所有的条件逻辑都被应用在了被选中的行。这大大减少了代码的行数。

在速度方面,比普通的遍历快了315倍,比.iterrows()方法快了71倍,且比.apply()方法快了27倍。现在可以快速的处理大数据集了。

还有提升空间吗?

在apply_tariff_isin()中,需要手动调用三次df.loc和df.index.hour.isin()。比如24小时每个小时的费率不同,这意味着需要手动调用24次.isin()方法,所以这种方案通常不具有扩展性。幸运的是,还可以使用Pandas的pd.cut()功能:

@timeit(repeat=3, number=100)
def apply_tariff_cut(df):
 cents_per_kwh = pd.cut(x=df.index.hour,
 bins=[0, 7, 17, 24],
 include_lowest=True,
 labels=[12, 20, 28]).astype(int)
 df['cost_cents'] = cents_per_kwh * df['energy_kwh']

pd.cut()根据分组bins产生的区间生成对应的标签“费率”。

【注】include_lowest参数设定第一个间隔是否包含在组bins中,例如想要在该组中包含时间在0时点的数据。

这是种完全向量化的操作,它的执行速度已经起飞了:

>>> apply_tariff_cut(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_cut` ran in average of 0.003 seconds.

至此,现在可以将330个站点的数据处理时间从88分钟缩小到只需不到1秒。但是,还有最后一个选择,就是使用NumPy库来操作DataFrame下的每个NumPy数组,然后将处理结果集成回DataFrame数据结构中。

还有NumPy!

别忘了Pandas的Series和DataFrame是在NumPy库的基础上设计的。这提供了更多的灵活性,因为Pandas和NumPy数组可以无缝操作。

在下一例中,将演示NumPy的digitize()功能。它和Pandas的cut()功能类似,将数据分组。本例中将DataFrame中的索引(日期时间)进行分组,将三个时段分入三组。然后将分组后的电力消耗数组应用在电价数组上:

@timeit(repeat=3, number=100)
def apply_tariff_digitize(df):
 prices = np.array([12, 20, 28])
 bins = np.digitize(df.index.hour.values, bins=[7, 17, 24])
 df['cost_cents'] = prices[bins] * df['energy_kwh'].values

和cut()一样,语法简单易读。但是速度如何呢?

>>> apply_tariff_digitize(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_digitize` ran in average of 0.002 seconds.

执行速度上,仍然有提升,但是这种提升已经意义不大了。不如将更多精力去思考其他的事情。

Pandas可以提供很多批量处理数据方法的备用选项,这些已经在上边都一一演示过了。这里将最快到最慢的方法排序如下:

1. 使用向量化操作:没有for遍历的Pandas方法和函数。

2. 使用.apply()方法。

3. 使用.itertuples():将DataFrame行作为nametuple类从Python的collections模块中进行迭代。

4. 使用.iterrows():将DataFrame行作为(index,pd.Series)元组数组进行迭代。虽然Pandas的Series是一种灵活的数据结构,但将每一行生成一个Series并且访问它,仍然是一个比较大的开销。

5. 对逐个元素进行循环,使用df.loc或者df.iloc对每个单元格或者行进行处理。

【注】以上顺序不是我的建议,而是Pandas核心开发人员给的建议。

以下是本文中所有函数的调试时间汇总:

python使用Pandas库提升项目的运行速度过程详解

用HDFstore存储预处理数据

已经了解了用Pandas快速处理数据,现在我们需要探讨如何避免重复的数据处理过程。这里使用了Pandas内置的HDFStore方法。

通常在建立一些复杂的数据模型时,对数据做一些预处理是很常见的。例如,假如有10年时间跨度的分钟级的高频数据,但是模型只需要20分钟频次的数据或者其他低频次数据。你不希望每次测试分析模型时都需要预处理数据。

一种方案是,将已经完成预处理的数据存储在已处理数据表中,方便需要时随时调用。但是如何以正确的格式存储数据?如果将预处理数据另存为CSV,那么会丢失datetime类,再次读入时必须重新转换格式。

Pandas有个内置的解决方案,它使用HDF5,这是一种专门用于存储数组的高性能存储格式。Pandas的HDFstore方法可以将DataFrame存储在HDF5文件中,可以有效读写,同时仍然保留DataFrame各列的数据类型和其他元数据。它是一个类似字典的类,因此可以像Python中的dict类一样读写。

以下是将已经预处理的耗电量DataFrame写入HDF5文件的方法:

# 创建存储类文件并命名 `processed_data`
data_store = pd.HDFStore('processed_data.h5')
#将DataFrame写入存储文件中,并设置键(key) 'preprocessed_df'
data_store['preprocessed_df'] = df
data_store.close()

将数据存储在硬盘以后,可以随时随地调取预处理数据,不再需要重复加工。以下是关于如何从HDF5文件中访问数据的方法,同时保留了数据预处理时的数据类型:

# 访问数据仓库
data_store = pd.HDFStore('processed_data.h5')
# 读取键(key)为'preprocessed_df'的DataFrame
preprocessed_df = data_store['preprocessed_df']
data_store.close()

一个数据仓库可以存储多张表,每张表配有一个键。

【注】使用Pandas的HDFStore需要安装PyTables>=3.0.0,因此安装Pandas后,需要更新PyTables:

pip install --upgrade tables

总结

如果觉得你的Pandas项目不具备速度快、灵活、简单且直观的特征,那么该重新思考使用该库的方式了。

本次的Python学习教程已经相当直观的展示了正确的使用Pandas是可以大幅改善运行时间,以及代码可读性的。以下是应用Pandas的一些经验性的建议:

① 尝试更多的向量化操作,尽量避免类似for x in df的操作。如果代码中本身就有许多for循环,那么尽量使用Python自带的数据结构,因为Pandas会带来很多开销。

② 如果因为算法复杂无法使用向量化操作,可以尝试.apply()方法。

③ 如果必须循环遍历数组,可用.iterrows()或者.itertuples()改进语法和提升速度。

④ Pandas有很多可选项操作,总有几种方法可以完成从A到B的过程,比较不同方法的执行方式,选择最适合项目的一种。

⑤ 做好数据处理脚本后,可以将中间输出的预处理数据保存在HDFStore中,避免重新处理数据。

⑥ 在Pandas项目中,利用NumPy可以提高速度同时简化语法。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现支持目录FTP上传下载文件的方法
Jun 03 Python
使用Python制作微信跳一跳辅助
Jan 31 Python
python如何拆分含有多种分隔符的字符串
Mar 20 Python
pandas 转换成行列表进行读取与Nan处理的方法
Oct 30 Python
python中强大的format函数实例详解
Dec 05 Python
Python这样操作能存储100多万行的xlsx文件
Apr 16 Python
Apache,wsgi,django 程序部署配置方法详解
Jul 01 Python
django2.2 和 PyMySQL版本兼容问题
Feb 17 Python
Mac PyCharm中的.gitignore 安装设置教程
Apr 16 Python
Python爬虫入门有哪些基础知识点
Jun 02 Python
Python存储读取HDF5文件代码解析
Nov 25 Python
Python中np.random.randint()参数详解及用法实例
Sep 23 Python
Python-copy()与deepcopy()区别详解
Jul 12 #Python
新手入门Python编程的8个实用建议
Jul 12 #Python
python读取并写入mat文件的方法
Jul 12 #Python
numpy数组广播的机制
Jul 12 #Python
Python的numpy库下的几个小函数的用法(小结)
Jul 12 #Python
python读取.mat文件的数据及实例代码
Jul 12 #Python
如何用Python破解wifi密码过程详解
Jul 12 #Python
You might like
php导出CSV抽象类实例
2014/09/24 PHP
Joomla使用Apache重写模式的方法
2016/05/04 PHP
PHP进制转换实例分析(2,8,16,36,64进制至10进制相互转换)
2017/02/04 PHP
详解thinkphp5+swoole实现异步邮件群发(SMTP方式)
2017/10/13 PHP
Mootools 1.2教程 类(一)
2009/09/15 Javascript
基于jQuery的仿flash的广告轮播
2010/11/05 Javascript
基于jQuery实现表格数据的动态添加与统计的代码
2011/01/31 Javascript
javascript之bind使用介绍
2011/10/09 Javascript
node.js中的console.trace方法使用说明
2014/12/09 Javascript
JQuery中clone方法复制节点
2015/05/18 Javascript
easyui Droppable组件实现放置特效
2015/08/19 Javascript
Bootstrap企业网站实战项目4
2016/10/14 Javascript
jQuery实用密码强度检测
2017/03/02 Javascript
jQuery插件HighCharts绘制2D柱状图、折线图的组合双轴图效果示例【附demo源码下载】
2017/03/09 Javascript
xmlplus组件设计系列之树(Tree)(9)
2017/05/02 Javascript
vue左侧菜单,树形图递归实现代码
2018/08/24 Javascript
Vant+postcss-pxtorem 实现浏览器适配功能
2021/02/05 Javascript
[58:11]守擂赛第二周擂主赛 DeMonsTer vs Leopard
2020/04/28 DOTA
[48:24]完美世界DOTA2联赛PWL S3 Forest vs INK ICE 第一场 12.09
2020/12/12 DOTA
Python 实现简单的电话本功能
2015/08/09 Python
浅谈python中对于json写入txt文件的编码问题
2018/06/07 Python
Python PyAutoGUI模块控制鼠标和键盘实现自动化任务详解
2018/09/04 Python
python SocketServer源码深入解读
2019/09/17 Python
Django框架model模型对象验证实现方法分析
2019/10/02 Python
Django admin管理工具TabularInline类用法详解
2020/05/14 Python
华为旗下电子商务平台:华为商城
2016/08/06 全球购物
纽约著名的服装辅料来源:M&J Trimming
2017/07/26 全球购物
办公室保洁员岗位职责
2013/12/02 职场文书
材料物理专业求职信
2014/09/01 职场文书
2014年科技工作总结
2014/11/26 职场文书
大学生党员个人总结
2015/02/13 职场文书
2015年人事工作总结范文
2015/04/09 职场文书
2015年化妆品销售工作总结
2015/05/11 职场文书
转学证明范本
2015/06/19 职场文书
SpringBoot整合JWT的入门指南
2021/06/29 Java/Android
Golang解析JSON对象
2022/04/30 Golang