解决keras使用cov1D函数的输入问题


Posted in Python onJune 29, 2020

解决了以下错误:

1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4

2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …

1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4

错误代码:

model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape))

或者

model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1:])))

这是因为模型输入的维数有误,在使用基于tensorflow的keras中,cov1d的input_shape是二维的,应该:

1、reshape x_train的形状

x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1))

2、改变input_shape

model = Sequential()
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1)))

大神原文:

The input shape is wrong, it should be input_shape = (1, 3253) for Theano or (3253, 1) for TensorFlow. The input shape doesn't include the number of samples.

Then you need to reshape your data to include the channels axis:

x_train = x_train.reshape((500000, 1, 3253))

Or move the channels dimension to the end if you use TensorFlow. After these changes it should work.

2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …

出现此问题是因为ylabel的维数与x_train x_test不符,既然将x_train x_test都reshape了,那么也需要对y进行reshape。

解决办法:

同时对照x_train改变ylabel的形状

t_train=t_train.reshape((t_train.shape[0],1))
t_test = t_test.reshape((t_test.shape[0],1))

附:

修改完的代码:

import warnings
warnings.filterwarnings("ignore")
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

import pandas as pd
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn import preprocessing

from keras.models import Sequential
from keras.layers import Dense, Dropout, BatchNormalization, Activation, Flatten, Conv1D
from keras.callbacks import LearningRateScheduler, EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras import optimizers
from keras.regularizers import l2
from keras.models import load_model
df_train = pd.read_csv('./input/train_V2.csv')
df_test = pd.read_csv('./input/test_V2.csv')
df_train.drop(df_train.index[[2744604]],inplace=True)#去掉nan值
df_train["distance"] = df_train["rideDistance"]+df_train["walkDistance"]+df_train["swimDistance"]
# df_train["healthpack"] = df_train["boosts"] + df_train["heals"]
df_train["skill"] = df_train["headshotKills"]+df_train["roadKills"]
df_test["distance"] = df_test["rideDistance"]+df_test["walkDistance"]+df_test["swimDistance"]
# df_test["healthpack"] = df_test["boosts"] + df_test["heals"]
df_test["skill"] = df_test["headshotKills"]+df_test["roadKills"]

df_train_size = df_train.groupby(['matchId','groupId']).size().reset_index(name='group_size')
df_test_size = df_test.groupby(['matchId','groupId']).size().reset_index(name='group_size')

df_train_mean = df_train.groupby(['matchId','groupId']).mean().reset_index()
df_test_mean = df_test.groupby(['matchId','groupId']).mean().reset_index()

df_train = pd.merge(df_train, df_train_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId'])
df_test = pd.merge(df_test, df_test_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId'])
del df_train_mean
del df_test_mean

df_train = pd.merge(df_train, df_train_size, how='left', on=['matchId', 'groupId'])
df_test = pd.merge(df_test, df_test_size, how='left', on=['matchId', 'groupId'])
del df_train_size
del df_test_size

target = 'winPlacePerc'
train_columns = list(df_test.columns)
""" remove some columns """
train_columns.remove("Id")
train_columns.remove("matchId")
train_columns.remove("groupId")
train_columns_new = []
for name in train_columns:
 if '_' in name:
  train_columns_new.append(name)
train_columns = train_columns_new
# print(train_columns)

X = df_train[train_columns]
Y = df_test[train_columns]
T = df_train[target]

del df_train
x_train, x_test, t_train, t_test = train_test_split(X, T, test_size = 0.2, random_state = 1234)

# scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(x_train)
scaler = preprocessing.QuantileTransformer().fit(x_train)

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
Y = scaler.transform(Y)
x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1))
t_train=t_train.reshape((t_train.shape[0],1))
t_test = t_test.reshape((t_test.shape[0],1))

model = Sequential()
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1)))
model.add(BatchNormalization())
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(16, kernel_size=3, strides=1, padding='valid'))
model.add(BatchNormalization())
model.add(Conv1D(16, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(32, kernel_size=3, strides=1, padding='valid'))
model.add(BatchNormalization())
model.add(Conv1D(32, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(32, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(64, kernel_size=3, strides=1, padding='same'))
model.add(Activation('tanh'))
model.add(Flatten())
model.add(Dropout(0.5))
# model.add(Dropout(0.25))
model.add(Dense(512,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01)))
model.add(Dense(128,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01)))
model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))

optimizers.Adam(lr=0.01, epsilon=1e-8, decay=1e-4)

model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])
model.summary()

ng = EarlyStopping(monitor='val_mean_absolute_error', mode='min', patience=4, verbose=1)
# model_checkpoint = ModelCheckpoint(filepath='best_model.h5', monitor='val_mean_absolute_error', mode = 'min', save_best_only=True, verbose=1)
# reduce_lr = ReduceLROnPlateau(monitor='val_mean_absolute_error', mode = 'min',factor=0.5, patience=3, min_lr=0.0001, verbose=1)
history = model.fit(x_train, t_train,
     validation_data=(x_test, t_test),
     epochs=30,
     batch_size=32768,
     callbacks=[early_stopping],
     verbose=1)predict(Y)
pred = pred.ravel()

补充知识:Keras Conv1d 参数及输入输出详解

Conv1d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True)

filters:卷积核的数目(即输出的维度)

kernel_size: 整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度

strides: 整数或由单个整数构成的list/tuple,为卷积的步长。任何不为1的strides均为任何不为1的dilation_rata均不兼容

padding: 补0策略,为”valid”,”same”或”casual”,”casual”将产生因果(膨胀的)卷积,即output[t]不依赖于input[t+1:]。当对不能违反事件顺序的时序信号建模时有用。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

activation:激活函数,为预定义的激活函数名,或逐元素的Theano函数。如果不指定该函数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

model.add(Conv1D(filters=nn_params["input_filters"],
      kernel_size=nn_params["filter_length"],
      strides=1,
      padding='valid',
      activation=nn_params["activation"],
      kernel_regularizer=l2(nn_params["reg"])))

例:输入维度为(None,1000,4)

第一维度:None

第二维度:

output_length = int((input_length - nn_params["filter_length"] + 1))

在此情况下为:

output_length = (1000 + 2*padding - filters +1)/ strides = (1000 + 2*0 -32 +1)/1 = 969

第三维度:filters

以上这篇解决keras使用cov1D函数的输入问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
粗略分析Python中的内存泄漏
Apr 23 Python
django model去掉unique_together报错的解决方案
Oct 18 Python
Android 兼容性问题:java.lang.UnsupportedOperationException解决办法
Mar 19 Python
python中关于for循环的碎碎念
Jun 30 Python
python 对dataframe下面的值进行大规模赋值方法
Jun 09 Python
pyqt 实现在Widgets中显示图片和文字的方法
Jun 13 Python
Django之创建引擎索引报错及解决详解
Jul 17 Python
win10环境下配置vscode python开发环境的教程详解
Oct 16 Python
Django实现CAS+OAuth2的方法示例
Oct 30 Python
python-docx文件定位读取过程(尝试替换)
Feb 13 Python
python实现录屏功能(亲测好用)
Mar 02 Python
python subprocess pipe 实时输出日志的操作
Dec 05 Python
快速了解Python开发环境Spyder
Jun 29 #Python
使用Keras构造简单的CNN网络实例
Jun 29 #Python
基于K.image_data_format() == 'channels_first' 的理解
Jun 29 #Python
Python enumerate() 函数如何实现索引功能
Jun 29 #Python
解决Keras中CNN输入维度报错问题
Jun 29 #Python
Python字符串split及rsplit方法原理详解
Jun 29 #Python
浅谈Keras参数 input_shape、input_dim和input_length用法
Jun 29 #Python
You might like
php解析字符串里所有URL地址的方法
2015/04/03 PHP
根据分辩率调用不同的CSS.
2007/01/08 Javascript
一个轻量级的javascript库 pj介绍
2010/12/19 Javascript
Textarea与懒惰渲染实现代码
2012/01/04 Javascript
超级简单的jquery操作表格方法
2014/12/15 Javascript
javascript实现无限级select联动菜单
2015/01/02 Javascript
jquery实现的代替传统checkbox样式插件
2015/06/19 Javascript
javascript产生随机数方法汇总
2016/01/25 Javascript
轻松掌握JavaScript装饰者模式
2016/08/27 Javascript
JavaScript正则表达式实例详解
2016/10/16 Javascript
Vue中的v-cloak使用解读
2017/03/27 Javascript
JavaScript脚本语言是什么_动力节点Java学院整理
2017/06/26 Javascript
动手写一个angular版本的Message组件的方法
2017/12/16 Javascript
基于VuePress 轻量级静态网站生成器的实现方法
2018/04/17 Javascript
Node.js 实现抢票小工具 & 短信通知提醒功能
2019/10/22 Javascript
解决element-ui里的下拉多选框 el-select 时,默认值不可删除问题
2020/08/14 Javascript
Jquery $.map使用方法实例详解
2020/09/01 jQuery
django中模板的html自动转意方法
2018/05/27 Python
对python中for、if、while的区别与比较方法
2018/06/25 Python
对Python w和w+权限的区别详解
2019/01/23 Python
使用python实现ftp的文件读写方法
2019/07/02 Python
Python爬虫学习之获取指定网页源码
2019/07/30 Python
python列表插入append(), extend(), insert()用法详解
2019/09/14 Python
python判断单向链表是否包括环,若包含则计算环入口的节点实例分析
2019/10/23 Python
Python底层封装实现方法详解
2020/01/22 Python
scrapy数据存储在mysql数据库的两种方式(同步和异步)
2020/02/18 Python
教学实习自我评价
2014/01/28 职场文书
师德个人剖析材料
2014/02/02 职场文书
品酒会策划方案
2014/05/26 职场文书
公司员工活动策划方案
2014/08/20 职场文书
学校师德师风自我剖析材料
2014/09/29 职场文书
2014年小学班主任工作总结
2014/11/08 职场文书
2014年化妆品销售工作总结
2014/12/01 职场文书
2015年学校政教工作总结
2015/07/20 职场文书
解决 Redis 秒杀超卖场景的高并发
2022/04/12 Redis
Mybatis 一级缓存和二级缓存原理区别
2022/09/23 Java/Android