手把手教你Python yLab的绘制折线图的画法


Posted in Python onOctober 23, 2019

Python的可视化工具有很多,数不胜数,各有优劣。本文就对其中的pylab进行介绍。之所以介绍这一款,是因为它和Matlab的强烈相似度,如果你使用过Matlab,那么相信pylab你也会很快上手。

简单的plot函数

pylab绘图,最基本的函数就是plot函数,当然如果想要将图片显示出来,需要额外添加一个show函数。

python的绘图中,numpy是一个非常常用的工具,不太熟悉的可以参考博主的另一篇博文:【Python】Python之Numpy的超实用基础详细教程。

例如:

import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y)
 pylab.show()

运行生成的图片为:

手把手教你Python yLab的绘制折线图的画法

规定两个序列,只需要两个序列的长度相等,就可以以其中一个序列为横坐标,零一个序列为纵坐标,进行绘制

但是也看得出来,这样的图片是比较寒碜的,简单朴素。我们可以对线条进行一些修饰,比如线型、颜色、点型等等。只需要在plot函数中添加一个参数即可。这个参数用法比较灵活,特可以从下表的值中进行组合选择:

颜色 线型 点型
‘b' (蓝色) ‘-' (实线) ‘,' (像素)
‘g' (绿色) ‘?' (虚线) ‘o' (圆形)
‘r' (红色) ‘-.' (虚点线) ‘^' (上三角)
‘y' (黄色) ‘:' (点线) ‘s' (方形)
‘k' (黑色) ‘.' (点) ‘+' (加号)
‘w' (蓝色) ‘x' (叉形)

例如:

import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y, "b-.+")
 pylab.show()

运行生成的图片为:

手把手教你Python yLab的绘制折线图的画法

如果,还想增加图例,x轴、y轴的含义和刻度,标题的信息,也可以通过添加一些函数来进行。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y = [i*i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y, "b-.+", label='line')
 
 pylab.xlabel('x')       # x、y轴的介绍
 pylab.ylabel('y')
 
 pylab.xlim([0, 1])      # x、y轴的长度区间
 pylab.ylim([0, 1])
 
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)    # x、y轴的刻度
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 
 pylab.title('x-y')      # x、y的标题
 
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))     # 图例的位置
 pylab.show()

运行生成的图片为:

手把手教你Python yLab的绘制折线图的画法

是不是瞬间就感觉丰富了许多!

多折线绘制

当然,在很多时刻需要绘制多条折线。很明显,可以选择将多条直线绘制到同一张图片上,也可以选择在图片上绘制不同的子图。

多折线同图

将多条折线绘制到同一张图片上,这非常简单,直接再plot一条直线就可以了。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.plot(x, y2, "r-.+", label='line2')

 pylab.xlabel('x')
 pylab.ylabel('y')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
 pylab.show()

多折线不同图

将多条折线绘制到图片上的不同子图上,这就需要通过subplot进行区域分割和指定。

subplot(numRows, numCols, plotNum)

该函数会将这个图片分为numRows行、nulCols列,然后按照从左到右、从上到下的顺序进行编号,最左上的编号为1。plotNum参数指定子图的所在区域

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]

 pylab.subplot(1, 2, 1)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.xlabel('x')
 pylab.ylabel('y1')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y1')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(1, 2, 2)
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y2')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y2')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.show()

运行生成的图片为:

手把手教你Python yLab的绘制折线图的画法

这是比较规整的例子,如果是不规整的呢?例如,第一行两张图,第二行一张图。这就要稍微变通一下了。

第一行其实是按照2*2分法的第一个和第二个,第二行其实是按照2*1分法的第二行。这样思考就会迎刃而解了。

# -*- coding:UTF-8 -*-
import pylab
import numpy as np

if __name__ == "__main__":
 x = np.arange(0, 1, 0.05)
 y1 = [i*i for i in np.arange(0, 1, 0.05)]
 y2 = [i+i for i in np.arange(0, 1, 0.05)]

 pylab.subplot(2, 2, 1)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.xlabel('x')
 pylab.ylabel('y1')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y1')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(2, 2, 2)
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y2')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y2')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.subplot(2, 1, 2)
 pylab.plot(x, y1, "b-.+", label='line1')
 pylab.plot(x, y2, "r-.+", label='line2')
 pylab.xlabel('x')
 pylab.ylabel('y')
 pylab.xlim([0, 1])
 pylab.ylim([0, 1])
 pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
 pylab.title('x-y')
 pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))

 pylab.show()

运行生成的图片为:

手把手教你Python yLab的绘制折线图的画法

其他函数

除了上述函数之外,还有一些其他的常用函数。

pylab.grid()       # 网格绘制

pylab.savefig(图片存储路径, dpi=200)    # 保存为图片

掌握了这些基本的折现图的绘制函数,相信一般的折线图都可以轻松掌握。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python生成随机MAC地址
Mar 10 Python
在Mac OS上使用mod_wsgi连接Python与Apache服务器
Dec 24 Python
Python连接mysql数据库的正确姿势
Feb 03 Python
Python脚本简单实现打开默认浏览器登录人人和打开QQ的方法
Apr 12 Python
Python实现并行抓取整站40万条房价数据(可更换抓取城市)
Dec 14 Python
Python+Turtle动态绘制一棵树实例分享
Jan 16 Python
pandas DataFrame实现几列数据合并成为新的一列方法
Jun 08 Python
Python从Excel中读取日期一列的方法
Nov 28 Python
Python生命游戏实现原理及过程解析(附源代码)
Aug 01 Python
详解使用Python下载文件的几种方法
Oct 13 Python
详解Anconda环境下载python包的教程(图形界面+命令行+pycharm安装)
Nov 11 Python
如何解决flask修改静态资源后缓存文件不能及时更改问题
Aug 02 Python
Python之Numpy的超实用基础详细教程
Oct 23 #Python
Python从列表推导到zip()函数的5种技巧总结
Oct 23 #Python
Python箱型图绘制与特征值获取过程解析
Oct 22 #Python
Python使用贪婪算法解决问题
Oct 22 #Python
python元组和字典的内建函数实例详解
Oct 22 #Python
Python List列表对象内置方法实例详解
Oct 22 #Python
Python序列对象与String类型内置方法详解
Oct 22 #Python
You might like
修改apache配置文件去除thinkphp url中的index.php
2014/01/17 PHP
destoon首页调用求购供应信息的地区名称的方法
2014/08/21 PHP
php学习笔记之面向对象
2014/11/08 PHP
PHP实现股票趋势图和柱形图
2015/02/07 PHP
php在apache环境下实现gzip配置方法
2015/04/02 PHP
php对二维数组进行相关操作(排序、转换、去空白等)
2015/11/04 PHP
PHP守护进程化在C和PHP环境下的实现
2017/11/21 PHP
JQuery之拖拽插件实现代码
2011/04/14 Javascript
一个简单的Node.js异步操作管理器分享
2014/04/29 Javascript
AngularJS中如何使用$parse或$eval在运行时对Scope变量赋值
2016/01/25 Javascript
再谈JavaScript异步编程
2016/01/27 Javascript
js鼠标单击和双击事件冲突问题的快速解决方法
2016/07/11 Javascript
javascript中数组和字符串的方法对比
2016/07/20 Javascript
AngularJS表达式讲解及示例代码
2016/08/16 Javascript
gulp-uglify 与gulp.watch()配合使用时报错(重复压缩问题)
2016/08/24 Javascript
Angularjs 实现分页功能及示例代码
2016/09/14 Javascript
jQuery中的select操作详解
2016/11/29 Javascript
angularjs过滤器--filter与ng-repeat配合有奇效
2017/04/20 Javascript
node中Express 动态设置端口的方法
2017/08/04 Javascript
anime.js 实现带有描边动画效果的复选框(推荐)
2017/12/24 Javascript
微信小程序入门之广告条实现方法示例
2018/12/05 Javascript
nodejs一个简单的文件服务器的创建方法
2019/09/13 NodeJs
js、jquery实现列表模糊搜索功能过程解析
2020/03/27 jQuery
谈谈我在vue-cli3中用预渲染遇到的坑
2020/04/22 Javascript
ES6 Symbol在对象中的作用实例分析
2020/06/06 Javascript
vue 组件基础知识总结
2021/01/26 Vue.js
使用Python3 编写简单信用卡管理程序
2016/12/21 Python
对python借助百度云API对评论进行观点抽取的方法详解
2019/02/21 Python
python3.6中anaconda安装sklearn踩坑实录
2020/07/28 Python
详解python中的异常和文件读写
2021/01/03 Python
Helly Hansen工作服美国官方网上商店:为最恶劣的环境
2019/09/04 全球购物
以下的初始化有什么区别
2013/12/16 面试题
财产保全担保书范文
2014/04/01 职场文书
归途列车观后感
2015/06/17 职场文书
Vue3 Composition API的使用简介
2021/03/29 Vue.js
vue使用v-model进行跨组件绑定的基本实现方法
2021/04/28 Vue.js