Python开发之基于模板匹配的信用卡数字识别功能


Posted in Python onJanuary 13, 2020

环境介绍

Python 3.6 + OpenCV 3.4.1.15

原理介绍

首先,提取出模板中每一个数字的轮廓,再对信用卡图像进行处理,提取其中的数字部分,将该部分数字与模板进行匹配,即可得到结果。

模板展示

Python开发之基于模板匹配的信用卡数字识别功能

完整代码

# !/usr/bin/env python
# —*— coding: utf-8 —*—
# @Time: 2020/1/11 14:57
# @Author: Martin
# @File: utils.py
# @Software:PyCharm
import cv2


def sort_contours(cnts, method='left-to-right'):
 reverse = False
 i = 0
 if method == 'right-to-left' or method == 'bottom-to-top':
 reverse = True
 if method == 'top-to-bottom' or method == 'bottom-to-top':
 i = 1
 boundingboxes = [cv2.boundingRect(c) for c in cnts]
 (cnts, boundingboxes) = zip(*sorted(zip(cnts, boundingboxes), key=lambda b: b[1][i], reverse=reverse))
 return cnts, boundingboxes


def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 (h, w) = image.shape[:2]
 if width is None and height is None:
 return image
 if width is None:
 r = height / float(h)
 dim = (int(w * r), height)
 else:
 r = width / float(w)
 dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized
# !/usr/bin/env python
# —*— coding: utf-8 —*—
# @Time: 2020/1/11 14:57
# @Author: Martin
# @File: template_match.py
# @Software:PyCharm
"""
基于模板匹配的信用卡数字识别
"""
import cv2
import utils
import numpy as np

# 指定信用卡类型
FIRST_NUMBER = {
 '3' : 'American Express',
 '4' : 'Visa',
 '5' : 'MasterCard',
 '6' : 'Discover Card'
}


# 绘图显示
def cv_show(name, image):
 cv2.imshow(name, image)
 cv2.waitKey(0)
 cv2.destroyAllWindows()


# 读取模板图像
img = cv2.imread('./images/ocr_a_reference.png')
cv_show('img', img)
# 转化成灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
# 转化成二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)
# 计算轮廓
ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)
print(np.array(refCnts).shape)
# 排序,从左到右,从上到下
refCnts = utils.sort_contours(refCnts, method='left-to-right')[0]
digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
 (x, y , w, h) = cv2.boundingRect(c)
 roi = ref[y:y+h, x:x+w]
 roi = cv2.resize(roi, (57, 88))
 digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# 读取输入图像,预处理
img_path = input("Input the path and image name: ")
image_input = cv2.imread(img_path)
cv_show('image', image_input)
image_input = utils.resize(image_input, width=300)
gray = cv2.cvtColor(image_input, cv2.COLOR_BGR2GRAY)
cv_show('gray', gray)
# 礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat', tophat)

gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

print(np.array(gradX).shape)
cv_show('gradX', gradX)
# 闭操作
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX', gradX)
thresh = cv2.threshold(gradX, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh', thresh)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
cv_show('thresh', thresh)
# 计算轮廓
thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image_input.copy()
cv2.drawContours(cur_img, cnts, -1, (0, 0, 255), 3)
cv_show('img', cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
 (x, y, w, h) = cv2.boundingRect(c)
 ar = w / float(h)

 if 2.5 < ar < 4.0 and (40 < w < 55) and (10 < h < 20):
 locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda ix: ix[0])
output = []
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
 groupOutput = []

 group = gray[gY - 5:gY + gH + 5, gX - 5: gX + gW + 5]
 cv_show('group', group)
 # 预处理
 group = cv2.threshold(group, 0, 255, cv2.THRESH_OTSU)[1]
 cv_show('group', group)
 # 计算每一组轮廓
 group_, digitCnts, hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 digitCnts = utils.sort_contours(digitCnts, method='left-to-right')[0]
 # 计算每一组的每个数值
 for c in digitCnts:
 (x, y, w, h) = cv2.boundingRect(c)
 roi = group[y: y + h, x: x + w]
 roi = cv2.resize(roi, (57, 88))
 cv_show('roi', roi)
 scores = []
 for (digit, digitROI) in digits.items():
 result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
 (_, score, _, _) = cv2.minMaxLoc(result)
 scores.append(score)
 # 得到最合适的数字
 groupOutput.append(str(np.argmax(scores)))
 cv2.rectangle(image_input, (gX - 5, gY - 5), (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
 cv2.putText(image_input, "".join(groupOutput), (gX, gY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
 # 得到结果
 output.extend(groupOutput)
# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image_input)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果展示

Python开发之基于模板匹配的信用卡数字识别功能

Credit Card Type: Visa
Credit Card #: 4020340002345678

总结

以上所述是小编给大家介绍的Python开发之基于模板匹配的信用卡数字识别功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python实现的防DDoS脚本
Feb 08 Python
用python + openpyxl处理excel2007文档思路以及心得
Jul 14 Python
python append、extend与insert的区别
Oct 13 Python
django模型层(model)进行建表、查询与删除的基础教程
Nov 21 Python
python2.x实现人民币转大写人民币
Jun 20 Python
使用Python向C语言的链接库传递数组、结构体、指针类型的数据
Jan 29 Python
python3操作注册表的方法(Url protocol)
Feb 05 Python
python中的selenium安装的步骤(浏览器自动化测试框架)
Mar 17 Python
Python unittest框架操作实例解析
Apr 13 Python
Django 解决新建表删除后无法重新创建等问题
May 21 Python
Python使用os.listdir和os.walk获取文件路径
May 21 Python
Python使用永中文档转换服务
May 06 Python
python中的itertools的使用详解
Jan 13 #Python
python3读取csv文件任意行列代码实例
Jan 13 #Python
pytorch程序异常后删除占用的显存操作
Jan 13 #Python
Python跑循环时内存泄露的解决方法
Jan 13 #Python
PyTorch使用cpu加载模型运算方式
Jan 13 #Python
Python如何读取文件中图片格式
Jan 13 #Python
详解python破解zip文件密码的方法
Jan 13 #Python
You might like
php adodb介绍
2009/03/19 PHP
九个你必须知道而且又很好用的php函数和特点
2013/08/08 PHP
php.ini中的request_order推荐设置
2015/05/10 PHP
详解Grunt插件之LiveReload实现页面自动刷新(两种方案)
2015/07/31 PHP
PHP变量的作用范围实例讲解
2020/12/22 PHP
写了一个layout,拖动条连贯,内容区可为iframe
2007/08/19 Javascript
js操作Xml(向服务器发送Xml,处理服务器返回的Xml)(IE下有效)
2009/01/30 Javascript
jquery控制listbox中项的移动并排序
2009/11/12 Javascript
超酷的网页音乐播放器DewPlayer使用方法
2010/12/18 Javascript
在Ubuntu上安装最新版本的Node.js
2014/07/14 Javascript
JavaScript Array对象详解
2016/03/01 Javascript
js对字符串进行编码的方法总结(推荐)
2016/11/10 Javascript
Javascript 实现全屏滚动实例代码
2016/12/31 Javascript
Vue引用第三方datepicker插件无法监听datepicker输入框的值的解决
2018/01/27 Javascript
Express下采用bcryptjs进行密码加密的方法
2018/02/07 Javascript
关于Mac下安装nodejs、npm和cnpm的教程
2018/04/11 NodeJs
vue单页应用在页面刷新时保留状态数据的方法
2018/09/21 Javascript
JavaScript作用域链实例详解
2019/01/21 Javascript
详解JavaScript原型与原型链
2020/11/16 Javascript
[46:37]LGD vs TNC 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/16 DOTA
如何搜索查找并解决Django相关的问题
2014/06/30 Python
使用python编写脚本获取手机当前应用apk的信息
2014/07/21 Python
在Python中处理日期和时间的基本知识点整理汇总
2015/05/22 Python
Python2.7基于笛卡尔积算法实现N个数组的排列组合运算示例
2017/11/23 Python
对numpy的array和python中自带的list之间相互转化详解
2018/04/13 Python
python实现公司年会抽奖程序
2019/01/22 Python
Python中整数的缓存机制讲解
2019/02/16 Python
matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)
2021/01/05 Python
深入浅析css3 中display box使用方法
2015/11/25 HTML / CSS
Belle Maison倍美丛官网:日本千趣会旗下邮购网站
2016/07/22 全球购物
意大利综合购物网站:Giordano Shop
2016/10/21 全球购物
运动会广播稿诗歌版
2014/09/12 职场文书
材料员岗位职责范本
2015/04/11 职场文书
停发工资证明范本
2015/06/12 职场文书
2016年“12.4”法制宣传日活动总结
2016/04/01 职场文书
DIV CSS实现网页背景半透明效果
2021/12/06 HTML / CSS