python爬取天气数据的实例详解


Posted in Python onNovember 20, 2020

就在前几天还是二十多度的舒适温度,今天一下子就变成了个位数,小编已经感受到冬天寒风的无情了。之前对获取天气都是数据上的搜集,做成了一个数据表后,对温度变化的感知并不直观。那么,我们能不能用python中的方法做一个天气数据分析的图形,帮助我们更直接的看出天气变化呢?

使用pygal绘图,使用该模块前需先安装pip install pygal,然后导入import pygal

bar = pygal.Line() # 创建折线图
bar.add('最低气温', lows)  #添加两线的数据序列
bar.add('最高气温', highs) #注意lows和highs是int型的列表
bar.x_labels = daytimes
bar.x_labels_major = daytimes[::30]
bar.x_label_rotation = 45
bar.title = cityname+'未来七天气温走向图'  #设置图形标题
bar.x_title = '日期'  #x轴标题
bar.y_title = '气温(摄氏度)' # y轴标题
bar.legend_at_bottom = True
bar.show_x_guides = False
bar.show_y_guides = True
bar.render_to_file('temperate1.svg') # 将图像保存为SVG文件,可通过浏览器

最终生成的图形如下图所示,直观的显示了天气情况:

python爬取天气数据的实例详解

完整代码

import csv
import sys
import urllib.request
from bs4 import BeautifulSoup # 解析页面模块
import pygal
import cityinfo
 
cityname = input("请输入你想要查询天气的城市:")
if cityname in cityinfo.city:
  citycode = cityinfo.city[cityname]
else:
  sys.exit()
url = '非常抱歉,网页无法访问' + citycode + '.shtml'
header = ("User-Agent","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36") # 设置头部信息
http_handler = urllib.request.HTTPHandler()
opener = urllib.request.build_opener(http_handler) # 修改头部信息
opener.addheaders = [header]
request = urllib.request.Request(url) # 制作请求
response = opener.open(request) # 得到应答包
html = response.read() # 读取应答包
html = html.decode('utf-8') # 设置编码,否则会乱码
# 根据得到的页面信息进行初步筛选过滤
final = [] # 初始化一个列表保存数据
bs = BeautifulSoup(html, "html.parser") # 创建BeautifulSoup对象
body = bs.body
data = body.find('div', {'id': '7d'})
print(type(data))
ul = data.find('ul')
li = ul.find_all('li')
# 爬取自己需要的数据
i = 0 # 控制爬取的天数
lows = [] # 保存低温
highs = [] # 保存高温
daytimes = [] # 保存日期
weathers = [] # 保存天气
for day in li: # 便利找到的每一个li
  if i < 7:
    temp = [] # 临时存放每天的数据
    date = day.find('h1').string # 得到日期
    #print(date)
    temp.append(date)
    daytimes.append(date)
    inf = day.find_all('p') # 遍历li下面的p标签 有多个p需要使用find_all 而不是find
    #print(inf[0].string) # 提取第一个p标签的值,即天气
    temp.append(inf[0].string)
    weathers.append(inf[0].string)
    temlow = inf[1].find('i').string # 最低气温
    if inf[1].find('span') is None: # 天气预报可能没有最高气温
      temhigh = None
      temperate = temlow
    else:
      temhigh = inf[1].find('span').string # 最高气温
      temhigh = temhigh.replace('℃', '')
      temperate = temhigh + '/' + temlow
    # temp.append(temhigh)
    # temp.append(temlow)
    lowStr = ""
    lowStr = lowStr.join(temlow.string)
    lows.append(int(lowStr[:-1])) # 以上三行将低温NavigableString转成int类型并存入低温列表
    if temhigh is None:
      highs.append(int(lowStr[:-1]))
      highStr = ""
      highStr = highStr.join(temhigh)
      highs.append(int(highStr)) # 以上三行将高温NavigableString转成int类型并存入高温列表
    temp.append(temperate)
    final.append(temp)
    i = i + 1
# 将最终的获取的天气写入csv文件
with open('weather.csv', 'a', errors='ignore', newline='') as f:
  f_csv = csv.writer(f)
  f_csv.writerows([cityname])
  f_csv.writerows(final)
# 绘图
bar = pygal.Line() # 创建折线图
bar.add('最低气温', lows)
bar.add('最高气温', highs)
bar.x_labels = daytimes
bar.x_labels_major = daytimes[::30]
# bar.show_minor_x_labels = False # 不显示X轴最小刻度
bar.x_label_rotation = 45
bar.title = cityname+'未来七天气温走向图'
bar.x_title = '日期'
bar.y_title = '气温(摄氏度)'
bar.legend_at_bottom = True
bar.show_x_guides = False
bar.show_y_guides = True
bar.render_to_file('temperate.svg')

Python爬取天气数据实例扩展:

import requests
from bs4 import BeautifulSoup
from pyecharts import Bar

ALL_DATA = []
def send_parse_urls(start_urls):
  headers = {
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36"
  }
  for start_url in start_urls:
    response = requests.get(start_url,headers=headers)
    # 编码问题的解决
    response = response.text.encode("raw_unicode_escape").decode("utf-8")
    soup = BeautifulSoup(response,"html5lib") #lxml解析器:性能比较好,html5lib:适合页面结构比较混乱的
    div_tatall = soup.find("div",class_="conMidtab") #find() 找符合要求的第一个元素
    tables = div_tatall.find_all("table") #find_all() 找到符合要求的所有元素的列表
    for table in tables:
      trs = table.find_all("tr")
      info_trs = trs[2:]
      for index,info_tr in enumerate(info_trs): # 枚举函数,可以获得索引
        # print(index,info_tr)
        # print("="*30)
        city_td = info_tr.find_all("td")[0]
        temp_td = info_tr.find_all("td")[6]
        # if的判断的index的特殊情况应该在一般情况的后面,把之前的数据覆盖
        if index==0:
          city_td = info_tr.find_all("td")[1]
          temp_td = info_tr.find_all("td")[7]
        city=list(city_td.stripped_strings)[0]
        temp=list(temp_td.stripped_strings)[0]
        ALL_DATA.append({"city":city,"temp":temp})
  return ALL_DATA

def get_start_urls():
  start_urls = [
    "http://www.weather.com.cn/textFC/hb.shtml",
    "http://www.weather.com.cn/textFC/db.shtml",
    "http://www.weather.com.cn/textFC/hd.shtml",
    "http://www.weather.com.cn/textFC/hz.shtml",
    "http://www.weather.com.cn/textFC/hn.shtml",
    "http://www.weather.com.cn/textFC/xb.shtml",
    "http://www.weather.com.cn/textFC/xn.shtml",
    "http://www.weather.com.cn/textFC/gat.shtml",
  ]
  return start_urls

def main():
  """
  主程序逻辑
  展示全国实时温度最低的十个城市气温排行榜的柱状图
  """
  # 1 获取所有起始url
  start_urls = get_start_urls()
  # 2 发送请求获取响应、解析页面
  data = send_parse_urls(start_urls)
  # print(data)
  # 4 数据可视化
    #1排序
  data.sort(key=lambda data:int(data["temp"]))
    #2切片,选择出温度最低的十个城市和温度值
  show_data = data[:10]
    #3分出城市和温度
  city = list(map(lambda data:data["city"],show_data))
  temp = list(map(lambda data:int(data["temp"]),show_data))
    #4创建柱状图、生成目标图
  chart = Bar("中国最低气温排行榜") #需要安装pyechart模块
  chart.add("",city,temp)
  chart.render("tempture.html")

if __name__ == '__main__':
  main()

到此这篇关于python爬取天气数据的实例详解的文章就介绍到这了,更多相关python爬虫天气数据的分析内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现将DOC文档转换为PDF的方法
Jul 25 Python
浅谈python对象数据的读写权限
Sep 12 Python
关于Python中异常(Exception)的汇总
Jan 18 Python
使用Python对Csv文件操作实例代码
May 12 Python
python3爬取淘宝信息代码分析
Feb 10 Python
python K近邻算法的kd树实现
Sep 06 Python
python使用pygame框架实现推箱子游戏
Nov 20 Python
Python使用os.listdir()和os.walk()获取文件路径与文件下所有目录的方法
Apr 01 Python
利用python实现周期财务统计可视化
Aug 25 Python
python实现ip地址查询经纬度定位详解
Aug 30 Python
python遍历文件目录、批量处理同类文件
Aug 31 Python
在Python中等距取出一个数组其中n个数的实现方式
Nov 27 Python
python爬取招聘要求等信息实例
Nov 20 #Python
python爬虫判断招聘信息是否存在的实例代码
Nov 20 #Python
Python getsizeof()和getsize()区分详解
Nov 20 #Python
Python析构函数__del__定义原理解析
Nov 20 #Python
Python request post上传文件常见要点
Nov 20 #Python
接口自动化多层嵌套json数据处理代码实例
Nov 20 #Python
如何设置PyCharm中的Python代码模版(推荐)
Nov 20 #Python
You might like
PHP 访问数据库配置通用方法(json)
2018/05/20 PHP
详解php协程知识点
2018/09/21 PHP
jQuery EasyUI API 中文文档 - Tabs标签页/选项卡
2011/10/01 Javascript
jquery全选/全不选/反选另一种实现方法(配合原生js)
2013/04/07 Javascript
JS定时器实例
2013/04/17 Javascript
用C/C++来实现 Node.js 的模块(一)
2014/09/24 Javascript
JS实现同一个网页布局滑动门和TAB选项卡实例
2015/09/23 Javascript
canvas快速绘制圆形、三角形、矩形、多边形方法介绍
2016/12/29 Javascript
微信小程序 input输入框详解及简单实例
2017/01/10 Javascript
JavaScript Base64 作为文件上传的实例代码解析
2017/02/14 Javascript
通过npm或yarn自动生成vue组件的方法示例
2019/02/12 Javascript
JavaScript实现的九种排序算法
2019/03/04 Javascript
vue实现将一个数组内的相同数据进行合并
2019/11/07 Javascript
整理 node-sass 安装失败的原因及解决办法(小结)
2020/02/19 Javascript
[04:03]2014DOTA2西雅图国际邀请赛 LGD战队巡礼
2014/07/07 DOTA
Python中的自定义函数学习笔记
2014/09/23 Python
Python实现将HTML转换成doc格式文件的方法示例
2017/11/20 Python
python实现随机调用一个浏览器打开网页
2018/04/21 Python
详解如何将python3.6软件的py文件打包成exe程序
2018/10/09 Python
Python3 实现文件批量重命名示例代码
2019/06/03 Python
Numpy数组array和矩阵matrix转换方法
2019/08/05 Python
PyQt5实现登录页面
2020/05/30 Python
Python实现ElGamal加密算法的示例代码
2020/06/19 Python
Python configparser模块应用过程解析
2020/08/14 Python
Python实现爬取网页中动态加载的数据
2020/08/17 Python
django有哪些好处和优点
2020/09/01 Python
纽约21世纪百货官网:Century 21
2016/08/27 全球购物
数以千计的折扣工业产品:ESE Direct
2018/05/20 全球购物
应用电子技术专业个人求职信
2013/09/21 职场文书
大学生找工作推荐信范文
2013/11/28 职场文书
女大学生自我鉴定
2013/12/09 职场文书
财务总监管理岗位职责
2014/03/08 职场文书
2014年国庆晚会主持词
2014/09/19 职场文书
小学教师节活动总结
2015/03/20 职场文书
Golang 获取文件md5校验的方法以及效率对比
2021/05/08 Golang
vue打包时去掉所有的console.log
2022/04/10 Vue.js