python爬取天气数据的实例详解


Posted in Python onNovember 20, 2020

就在前几天还是二十多度的舒适温度,今天一下子就变成了个位数,小编已经感受到冬天寒风的无情了。之前对获取天气都是数据上的搜集,做成了一个数据表后,对温度变化的感知并不直观。那么,我们能不能用python中的方法做一个天气数据分析的图形,帮助我们更直接的看出天气变化呢?

使用pygal绘图,使用该模块前需先安装pip install pygal,然后导入import pygal

bar = pygal.Line() # 创建折线图
bar.add('最低气温', lows)  #添加两线的数据序列
bar.add('最高气温', highs) #注意lows和highs是int型的列表
bar.x_labels = daytimes
bar.x_labels_major = daytimes[::30]
bar.x_label_rotation = 45
bar.title = cityname+'未来七天气温走向图'  #设置图形标题
bar.x_title = '日期'  #x轴标题
bar.y_title = '气温(摄氏度)' # y轴标题
bar.legend_at_bottom = True
bar.show_x_guides = False
bar.show_y_guides = True
bar.render_to_file('temperate1.svg') # 将图像保存为SVG文件,可通过浏览器

最终生成的图形如下图所示,直观的显示了天气情况:

python爬取天气数据的实例详解

完整代码

import csv
import sys
import urllib.request
from bs4 import BeautifulSoup # 解析页面模块
import pygal
import cityinfo
 
cityname = input("请输入你想要查询天气的城市:")
if cityname in cityinfo.city:
  citycode = cityinfo.city[cityname]
else:
  sys.exit()
url = '非常抱歉,网页无法访问' + citycode + '.shtml'
header = ("User-Agent","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36") # 设置头部信息
http_handler = urllib.request.HTTPHandler()
opener = urllib.request.build_opener(http_handler) # 修改头部信息
opener.addheaders = [header]
request = urllib.request.Request(url) # 制作请求
response = opener.open(request) # 得到应答包
html = response.read() # 读取应答包
html = html.decode('utf-8') # 设置编码,否则会乱码
# 根据得到的页面信息进行初步筛选过滤
final = [] # 初始化一个列表保存数据
bs = BeautifulSoup(html, "html.parser") # 创建BeautifulSoup对象
body = bs.body
data = body.find('div', {'id': '7d'})
print(type(data))
ul = data.find('ul')
li = ul.find_all('li')
# 爬取自己需要的数据
i = 0 # 控制爬取的天数
lows = [] # 保存低温
highs = [] # 保存高温
daytimes = [] # 保存日期
weathers = [] # 保存天气
for day in li: # 便利找到的每一个li
  if i < 7:
    temp = [] # 临时存放每天的数据
    date = day.find('h1').string # 得到日期
    #print(date)
    temp.append(date)
    daytimes.append(date)
    inf = day.find_all('p') # 遍历li下面的p标签 有多个p需要使用find_all 而不是find
    #print(inf[0].string) # 提取第一个p标签的值,即天气
    temp.append(inf[0].string)
    weathers.append(inf[0].string)
    temlow = inf[1].find('i').string # 最低气温
    if inf[1].find('span') is None: # 天气预报可能没有最高气温
      temhigh = None
      temperate = temlow
    else:
      temhigh = inf[1].find('span').string # 最高气温
      temhigh = temhigh.replace('℃', '')
      temperate = temhigh + '/' + temlow
    # temp.append(temhigh)
    # temp.append(temlow)
    lowStr = ""
    lowStr = lowStr.join(temlow.string)
    lows.append(int(lowStr[:-1])) # 以上三行将低温NavigableString转成int类型并存入低温列表
    if temhigh is None:
      highs.append(int(lowStr[:-1]))
      highStr = ""
      highStr = highStr.join(temhigh)
      highs.append(int(highStr)) # 以上三行将高温NavigableString转成int类型并存入高温列表
    temp.append(temperate)
    final.append(temp)
    i = i + 1
# 将最终的获取的天气写入csv文件
with open('weather.csv', 'a', errors='ignore', newline='') as f:
  f_csv = csv.writer(f)
  f_csv.writerows([cityname])
  f_csv.writerows(final)
# 绘图
bar = pygal.Line() # 创建折线图
bar.add('最低气温', lows)
bar.add('最高气温', highs)
bar.x_labels = daytimes
bar.x_labels_major = daytimes[::30]
# bar.show_minor_x_labels = False # 不显示X轴最小刻度
bar.x_label_rotation = 45
bar.title = cityname+'未来七天气温走向图'
bar.x_title = '日期'
bar.y_title = '气温(摄氏度)'
bar.legend_at_bottom = True
bar.show_x_guides = False
bar.show_y_guides = True
bar.render_to_file('temperate.svg')

Python爬取天气数据实例扩展:

import requests
from bs4 import BeautifulSoup
from pyecharts import Bar

ALL_DATA = []
def send_parse_urls(start_urls):
  headers = {
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36"
  }
  for start_url in start_urls:
    response = requests.get(start_url,headers=headers)
    # 编码问题的解决
    response = response.text.encode("raw_unicode_escape").decode("utf-8")
    soup = BeautifulSoup(response,"html5lib") #lxml解析器:性能比较好,html5lib:适合页面结构比较混乱的
    div_tatall = soup.find("div",class_="conMidtab") #find() 找符合要求的第一个元素
    tables = div_tatall.find_all("table") #find_all() 找到符合要求的所有元素的列表
    for table in tables:
      trs = table.find_all("tr")
      info_trs = trs[2:]
      for index,info_tr in enumerate(info_trs): # 枚举函数,可以获得索引
        # print(index,info_tr)
        # print("="*30)
        city_td = info_tr.find_all("td")[0]
        temp_td = info_tr.find_all("td")[6]
        # if的判断的index的特殊情况应该在一般情况的后面,把之前的数据覆盖
        if index==0:
          city_td = info_tr.find_all("td")[1]
          temp_td = info_tr.find_all("td")[7]
        city=list(city_td.stripped_strings)[0]
        temp=list(temp_td.stripped_strings)[0]
        ALL_DATA.append({"city":city,"temp":temp})
  return ALL_DATA

def get_start_urls():
  start_urls = [
    "http://www.weather.com.cn/textFC/hb.shtml",
    "http://www.weather.com.cn/textFC/db.shtml",
    "http://www.weather.com.cn/textFC/hd.shtml",
    "http://www.weather.com.cn/textFC/hz.shtml",
    "http://www.weather.com.cn/textFC/hn.shtml",
    "http://www.weather.com.cn/textFC/xb.shtml",
    "http://www.weather.com.cn/textFC/xn.shtml",
    "http://www.weather.com.cn/textFC/gat.shtml",
  ]
  return start_urls

def main():
  """
  主程序逻辑
  展示全国实时温度最低的十个城市气温排行榜的柱状图
  """
  # 1 获取所有起始url
  start_urls = get_start_urls()
  # 2 发送请求获取响应、解析页面
  data = send_parse_urls(start_urls)
  # print(data)
  # 4 数据可视化
    #1排序
  data.sort(key=lambda data:int(data["temp"]))
    #2切片,选择出温度最低的十个城市和温度值
  show_data = data[:10]
    #3分出城市和温度
  city = list(map(lambda data:data["city"],show_data))
  temp = list(map(lambda data:int(data["temp"]),show_data))
    #4创建柱状图、生成目标图
  chart = Bar("中国最低气温排行榜") #需要安装pyechart模块
  chart.add("",city,temp)
  chart.render("tempture.html")

if __name__ == '__main__':
  main()

到此这篇关于python爬取天气数据的实例详解的文章就介绍到这了,更多相关python爬虫天气数据的分析内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中文乱码的解决方法
Nov 04 Python
Python中操作文件之write()方法的使用教程
May 25 Python
Python文件读取的3种方法及路径转义
Jun 21 Python
深入浅析Python中的yield关键字
Jan 24 Python
pygame游戏之旅 如何制作游戏障碍
Nov 20 Python
Python如何使用OS模块调用cmd
Feb 27 Python
在python3.64中安装pyinstaller库的方法步骤
Jun 02 Python
Pytorch学习之torch用法----比较操作(Comparison Ops)
Jun 28 Python
Python logging模块进行封装实现原理解析
Aug 07 Python
Python还能这么玩之只用30行代码从excel提取个人值班表
Jun 05 Python
Python if else条件语句形式详解
Mar 24 Python
 分享一个Python 遇到数据库超好用的模块
Apr 06 Python
python爬取招聘要求等信息实例
Nov 20 #Python
python爬虫判断招聘信息是否存在的实例代码
Nov 20 #Python
Python getsizeof()和getsize()区分详解
Nov 20 #Python
Python析构函数__del__定义原理解析
Nov 20 #Python
Python request post上传文件常见要点
Nov 20 #Python
接口自动化多层嵌套json数据处理代码实例
Nov 20 #Python
如何设置PyCharm中的Python代码模版(推荐)
Nov 20 #Python
You might like
简单实现限定phpmyadmin访问ip的方法
2013/03/05 PHP
基于Linux调试工具strace与gdb的常用命令总结
2013/06/03 PHP
php基于str_pad实现卡号不足位数自动补0的方法
2014/11/12 PHP
Android App中DrawerLayout抽屉效果的菜单编写实例
2016/03/21 PHP
ThinkPHP3.2框架自定义配置和加载用法示例
2018/06/14 PHP
再谈IE中Flash控件的自动激活 ObjectWrap
2007/03/09 Javascript
js输入框邮箱自动提示功能代码实现
2013/12/10 Javascript
jquery引用方法时传递参数原理分析
2014/10/13 Javascript
Node.js的包详细介绍
2015/01/14 Javascript
全面解析Bootstrap表单使用方法(表单样式)
2015/11/24 Javascript
Bootstrap~多级导航(级联导航)的实现效果【附代码】
2016/03/08 Javascript
基于js实现的限制文本框只可以输入数字
2016/12/05 Javascript
input框中自动展示当前日期yyyy/mm/dd的实现方法
2017/07/06 Javascript
基于Vue的ajax公共方法(详解)
2018/01/20 Javascript
vue router 配置路由的方法
2018/07/26 Javascript
小程序中英文混合排序问题解决
2019/08/02 Javascript
jquery实现的分页显示功能示例
2019/08/23 jQuery
Vue-resource安装过程及使用方法解析
2020/07/21 Javascript
[03:49]2016完美“圣”典风云人物:AMS专访
2016/12/06 DOTA
跟老齐学Python之list和str比较
2014/09/20 Python
python输出当前目录下index.html文件路径的方法
2015/04/28 Python
详解Django+Uwsgi+Nginx 实现生产环境部署
2018/11/06 Python
基于torch.where和布尔索引的速度比较
2020/01/02 Python
python实现用类读取文件数据并计算矩形面积
2020/01/18 Python
详解查看Python解释器路径的两种方式
2020/10/15 Python
python爬虫今日热榜数据到txt文件的源码
2021/02/23 Python
微信小程序之html5 canvas绘图并保存到系统相册
2019/06/20 HTML / CSS
Melissa香港官网:MDreams
2016/07/01 全球购物
精选干货:Java精选笔试题附答案
2014/01/18 面试题
公司财务工作总结的自我评价
2013/11/23 职场文书
音乐教学随笔感言
2014/02/19 职场文书
安全先进个人材料
2014/12/29 职场文书
小班上学期个人总结
2015/02/12 职场文书
七年级思品教学反思
2016/02/20 职场文书
Win11怎么添加用户?Win11添加用户账户的方法
2022/07/15 数码科技
Java获取字符串编码格式实现思路
2022/09/23 Java/Android