使用Keras构造简单的CNN网络实例


Posted in Python onJune 29, 2020

1. 导入各种模块

基本形式为:

import 模块名

from 某个文件 import 某个模块

2. 导入数据(以两类分类问题为例,即numClass = 2)

训练集数据data

可以看到,data是一个四维的ndarray

训练集的标签

3. 将导入的数据转化我keras可以接受的数据格式

keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数

label = np_utils.to_categorical(label, numClass

此时的label变为了如下形式

(注:PyCharm无法显示那么多的数据,所以下面才只显示了1000个数据,实际上该例子所示的数据集有1223个数据)

4. 建立CNN模型

以下图所示的CNN网络为例

#生成一个model
model = Sequential()
 
#layer1-conv1
model.add(Convolution2D(16, 3, 3, border_mode='valid',input_shape=data.shape[-3:]))
model.add(Activation('tanh'))#tanh
 
# layer2-conv2
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh
 
# layer3-conv3
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh
 
# layer4
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))#tanh
 
# layer5-fully connect
model.add(Dense(numClass, init='normal')) 
model.add(Activation('softmax'))

# 
sgd = SGD(l2=0.1,lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")

5. 开始训练model

利用model.train_on_batch或者model.fit

补充知识:keras 多分类一些函数参数设置

用Lenet-5 识别Mnist数据集为例子:

采用下载好的Mnist数据压缩包转换成PNG图片数据集,加载图片采用keras图像预处理模块中的ImageDataGenerator。

首先import所需要的模块

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import MaxPooling2D,Input,Convolution2D
from keras.layers import Dropout, Flatten, Dense
from keras import backend as K

定义图像数据信息及训练参数

img_width, img_height = 28, 28 
train_data_dir = 'dataMnist/train' #train data directory
validation_data_dir = 'dataMnist/validation'# validation data directory
nb_train_samples = 60000 
nb_validation_samples = 10000
epochs = 50 
batch_size = 32

判断使用的后台

if K.image_dim_ordering() == 'th':
 input_shape = (3, img_width, img_height)
else:
 input_shape = (img_width, img_height, 3)

网络模型定义

主要注意最后的输出层定义

比如Mnist数据集是要对0~9这10种手写字符进行分类,那么网络的输出层就应该输出一个10维的向量,10维向量的每一维代表该类别的预测概率,所以此处输出层的定义为:

x = Dense(10,activation='softmax')(x)

此处因为是多分类问题,Dense()的第一个参数代表输出层节点数,要输出10类则此项值为10,激活函数采用softmax,如果是二分类问题第一个参数可以是1,激活函数可选sigmoid

img_input=Input(shape=input_shape)
x=Convolution2D(32, 3, 3, activation='relu', border_mode='same')(img_input)
x=MaxPooling2D((2,2),strides=(2, 2),border_mode='same')(x)

x=Convolution2D(32,3,3,activation='relu',border_mode='same')(x)
x=MaxPooling2D((2,2),strides=(2, 2),border_mode='same')(x)

x=Convolution2D(64,3,3,activation='relu',border_mode='same')(x)
x=MaxPooling2D((2,2),strides=(2, 2),border_mode='same')(x)

x = Flatten(name='flatten')(x)
x = Dense(64, activation='relu')(x)
x= Dropout(0.5)(x)
x = Dense(10,activation='softmax')(x)
model=Model(img_input,x)


model.compile(loss='binary_crossentropy',
    optimizer='rmsprop',
    metrics=['accuracy'])
model.summary()

利用ImageDataGenerator传入图像数据集

注意用ImageDataGenerator的方法.flow_from_directory()加载图片数据流时,参数class_mode要设为‘categorical',如果是二分类问题该值可设为‘binary',另外要设置classes参数为10种类别数字所在文件夹的名字,以列表的形式传入。

train_datagen = ImageDataGenerator(
 rescale=1. / 255,
 shear_range=0.2,
 zoom_range=0.2,
 horizontal_flip=True)

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
 train_data_dir,
 target_size=(img_width, img_height),
 batch_size=batch_size,
 class_mode='categorical', #多分类问题设为'categorical'
 classes=['0','1','2','3','4','5','6','7','8','9'] #十种数字图片所在文件夹的名字
 )

validation_generator = test_datagen.flow_from_directory(
 validation_data_dir,
 target_size=(img_width, img_height),
 batch_size=batch_size,
 class_mode='categorical'
 )

训练和保存模型及权值

model.fit_generator(
  train_generator,
  samples_per_epoch=nb_train_samples,
  nb_epoch=epochs,
  validation_data=validation_generator,
  nb_val_samples=nb_validation_samples
  )

model.save_weights('Mnist123weight.h5')
model.save('Mnist123model.h5')

至此训练结束

图片预测

注意model.save()可以将模型以及权值一起保存,而model.save_weights()只保存了网络权值,此时如果要进行预测,必须定义有和训练出该权值所用的网络结构一模一样的一个网络。

此处利用keras.models中的load_model方法加载model.save()所保存的模型,以恢复网络结构和参数。

from keras.models import load_model
from keras.preprocessing.image import img_to_array, load_img
import numpy as np
classes=['0','1','2','3','4','5','6','7','8','9']
model=load_model('Mnist123model.h5')
while True:
 img_addr=input('Please input your image address:')
 if img_addr=="exit":
  break
 else:
  img = load_img(img_addr, False, target_size=(28, 28))
  x = img_to_array(img) / 255.0
  x = np.expand_dims(x, axis=0)
  result = model.predict(x)
  ind=np.argmax(result,1)
  print('this is a ', classes[ind])

以上这篇使用Keras构造简单的CNN网络实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python操作sqlite3快速、安全插入数据(防注入)的实例
Apr 26 Python
Python中optionParser模块的使用方法实例教程
Aug 29 Python
使用PM2+nginx部署python项目的方法示例
Nov 07 Python
Python matplotlib画图与中文设置操作实例分析
Apr 23 Python
简单了解python的内存管理机制
Jul 08 Python
pytorch 更改预训练模型网络结构的方法
Aug 19 Python
Django Docker容器化部署之Django-Docker本地部署
Oct 09 Python
Python enumerate() 函数如何实现索引功能
Jun 29 Python
python+django+selenium搭建简易自动化测试
Aug 19 Python
python基本算法之实现归并排序(Merge sort)
Sep 01 Python
anaconda升级sklearn版本的实现方法
Feb 22 Python
pytorch 带batch的tensor类型图像显示操作
May 20 Python
基于K.image_data_format() == 'channels_first' 的理解
Jun 29 #Python
Python enumerate() 函数如何实现索引功能
Jun 29 #Python
解决Keras中CNN输入维度报错问题
Jun 29 #Python
Python字符串split及rsplit方法原理详解
Jun 29 #Python
浅谈Keras参数 input_shape、input_dim和input_length用法
Jun 29 #Python
使用 prometheus python 库编写自定义指标的方法(完整代码)
Jun 29 #Python
使用keras时input_shape的维度表示问题说明
Jun 29 #Python
You might like
VOLVO车载收音机
2021/03/02 无线电
PHP 强制下载文件代码
2010/10/24 PHP
Look And Say 序列php实现代码
2011/05/22 PHP
浅析PHP页面局部刷新功能的实现小结
2013/06/21 PHP
PHP版微信公众平台红包API
2015/04/02 PHP
php使用imagecopymerge()函数创建半透明水印
2018/01/25 PHP
Laravel 关联模型-关联新增和关联更新的方法
2019/10/10 PHP
Javascript写了一个清除“logo1_.exe”的杀毒工具(可扫描目录)
2007/02/09 Javascript
window.location和document.location的区别分析
2008/12/23 Javascript
javascript相等运算符与等同运算符详细介绍
2013/11/09 Javascript
javaScript 页面自动加载事件详解
2014/02/10 Javascript
jQuery中end()方法用法实例
2015/01/08 Javascript
JavaScript对数字的判断与处理实例分析
2015/02/02 Javascript
理解JS绑定事件
2016/01/19 Javascript
封装的dialog插件 基于bootstrap模态对话框的简单扩展
2016/08/10 Javascript
基于vue2.0+vuex+localStorage开发的本地记事本示例
2017/02/28 Javascript
使用nodeJs来安装less及编译less文件为css文件的方法
2017/11/20 NodeJs
通过jquery toggleClass()属性制作文章段落更改背景颜色
2018/05/21 jQuery
JS使用iView的Dropdown实现一个右键菜单
2019/05/06 Javascript
Vue父子传递实例讲解
2020/02/14 Javascript
NodeJS和浏览器中this关键字的不同之处
2021/03/03 NodeJs
Python字符串格式化的方法(两种)
2017/09/19 Python
python学习教程之使用py2exe打包
2017/09/24 Python
python的socket编程入门
2018/01/29 Python
python3+PyQt5+Qt Designer实现堆叠窗口部件
2018/04/20 Python
python 实现语音聊天机器人的示例代码
2018/12/02 Python
Pytorch mask-rcnn 实现细节分享
2020/06/24 Python
后勤工作职责
2013/12/22 职场文书
图书室管理制度
2014/01/19 职场文书
市场营销管理毕业生自荐信
2014/03/03 职场文书
运动会方阵口号
2014/06/07 职场文书
2014年党委工作总结
2014/11/22 职场文书
教师个人培训总结
2015/02/11 职场文书
对公司的意见和建议
2015/06/04 职场文书
在项目中使用redis做缓存的一些思路
2021/09/14 Redis
5个实用的JavaScript新特性
2022/06/16 Javascript