用python生成与调用cntk模型代码演示方法


Posted in Python onAugust 26, 2019

由于一些原因,视频录制要告一段落了。再写一篇关于cntk的文章分享出来吧。我也很想将这个事情进行下去。以后如果条件允许还会接着做。

cntk2.0框架生成的模型才可以支持python。1.0不支持。

python可以导入cntk.exe生成的框架,也可以导入python调用cntk生成的框架。举两个例子:

1 、导入cntk.exe生成的框架。

from cntk.ops.functions import load_model
from PIL import Image 
import numpy as np
from sklearn.utils import shuffle

np.random.seed(0)


def generate(N, mean, cov, diff):  
  #import ipdb;ipdb.set_trace()

  samples_per_class = int(N/2)

  X0 = np.random.multivariate_normal(mean, cov, samples_per_class)
  Y0 = np.zeros(samples_per_class)

  for ci, d in enumerate(diff):
    X1 = np.random.multivariate_normal(mean+d, cov, samples_per_class)
    Y1 = (ci+1)*np.ones(samples_per_class)

    X0 = np.concatenate((X0,X1))
    Y0 = np.concatenate((Y0,Y1))

  X, Y = shuffle(X0, Y0)

  return X,Y
mean = np.random.randn(2)
cov = np.eye(2) 
features, labels = generate(6, mean, cov, [[3.0], [3.0, 0.0]])
features= features.astype(np.float32) 
labels= labels.astype(np.int) 
print(features)
print(labels)



z = load_model("MC.dnn")


print(z.parameters[0].value)
print(z.parameters[0])
print(z)
print(z.uid)
#print(z.signature)
#print(z.layers[0].E.shape)
#print(z.layers[2].b.value)
for index in range(len(z.inputs)):
   print("Index {} for input: {}.".format(index, z.inputs[index]))

for index in range(len(z.outputs)):
   print("Index {} for output: {}.".format(index, z.outputs[index].name))

import cntk as ct
z_out = ct.combine([z.outputs[2].owner])

predictions = np.squeeze(z_out.eval({z_out.arguments[0]:[features]}))

ret = list()
for t in predictions:
  ret.append(np.argmax(t))
top_class = np.argmax(predictions)
print(ret)
print("predictions{}.top_class{}".format(predictions,top_class))

上述的代码生成一个.py文件。放到3分类例子中,跟模型一个文件夹下(需要预先用cntk.exe生成模型)。CNTK-2.0.beta15.0\CNTK-2.0.beta15.0\Tutorials\HelloWorld-LogisticRegression\Models

2 、python生成模型和使用自己的模型:

代码如下:

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 10 04:59:27 2017

@author: Administrator
"""

from __future__ import print_function


import matplotlib.pyplot as plt 
import numpy as np 
from matplotlib.colors import colorConverter, ListedColormap 
from cntk.learners import sgd, learning_rate_schedule, UnitType #old in learner
from cntk.ops.functions import load_model
from cntk.ops import *  #softmax
from cntk.io import CTFDeserializer, MinibatchSource, StreamDef, StreamDefs


from cntk import * 
from cntk.layers import Dense, Sequential
from cntk.logging import ProgressPrinter


def generate_random_data(sample_size, feature_dim, num_classes):
   # Create synthetic data using NumPy.
   Y = np.random.randint(size=(sample_size, 1), low=0, high=num_classes)

   # Make sure that the data is separable
   X = (np.random.randn(sample_size, feature_dim) + 3) * (Y + 1)
   X = X.astype(np.float32)
   # converting class 0 into the vector "1 0 0",
   # class 1 into vector "0 1 0", ...
   class_ind = [Y == class_number for class_number in range(num_classes)]
   Y = np.asarray(np.hstack(class_ind), dtype=np.float32)
   return X, Y

# Read a CTF formatted text (as mentioned above) using the CTF deserializer from a file
def create_reader(path, is_training, input_dim, num_label_classes):
  return MinibatchSource(CTFDeserializer(path, StreamDefs(
    labels = StreamDef(field='labels', shape=num_label_classes, is_sparse=False),
    features  = StreamDef(field='features', shape=input_dim, is_sparse=False)
  )), randomize = is_training, epoch_size = INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)   


def ffnet():
  inputs = 2
  outputs = 2
  layers = 2
  hidden_dimension = 50

  # input variables denoting the features and label data
  features = input((inputs), np.float32)
  label = input((outputs), np.float32)

  # Instantiate the feedforward classification model
  my_model = Sequential ([
          Dense(hidden_dimension, activation=sigmoid,name='d1'),
          Dense(outputs)])
  z = my_model(features)

  ce = cross_entropy_with_softmax(z, label)
  pe = classification_error(z, label)

  # Instantiate the trainer object to drive the model training
  lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)

  # Initialize the parameters for the reader
  input_dim=2
  num_output_classes=2
  num_samples_per_sweep = 6000
  # Get minibatches of training data and perform model training
  minibatch_size = 25
  num_minibatches_to_train = 1024
  num_sweeps_to_train_with = 2#10
  num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size  


  # progress_printer = ProgressPrinter(0)
  progress_printer = ProgressPrinter(tag='Training',num_epochs=num_sweeps_to_train_with)

  trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])
  #trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)])




  train_file = "Train2-noLiner_cntk_text.txt"  
  # Create the reader to training data set
  reader_train = create_reader(train_file, True, input_dim, num_output_classes)
  # Map the data streams to the input and labels.
  input_map = {
    label : reader_train.streams.labels,
    features : reader_train.streams.features
  } 
  print(reader_train.streams.keys())

  aggregate_loss = 0.0
  #for i in range(num_minibatches_to_train):
  for i in range(0, int(num_minibatches_to_train)):
    #train_features, labels = generate_random_data(minibatch_size, inputs, outputs)
    # Specify the mapping of input variables in the model to actual minibatch data to be trained with
    #trainer.train_minibatch({features : train_features, label : labels})

    # Read a mini batch from the training data file
    data = reader_train.next_minibatch(minibatch_size, input_map = input_map)
    trainer.train_minibatch(data)

    sample_count = trainer.previous_minibatch_sample_count
    aggregate_loss += trainer.previous_minibatch_loss_average * sample_count
    #
  last_avg_error = aggregate_loss / trainer.total_number_of_samples_seen
  trainer.summarize_training_progress()
  z.save_model("myfirstmod.dnn")
  print(z)
  print(z.parameters)
  print(z.d1)
  print(z.d1.signature)
  print(z.d1.root_function)
  print(z.d1.placeholders)
  print(z.d1.parameters)
  print(z.d1.op_name)
  print(z.d1.type)
  print(z.d1.output)
  print(z.outputs)

  test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)
  avg_error = trainer.test_minibatch({features : test_features, label : test_labels})
  print(' error rate on an unseen minibatch: {}'.format(avg_error))
  return last_avg_error, avg_error

np.random.seed(98052)
ffnet()



print("-------------分割-----------------")
inputs = 2
outputs = 2
minibatch_size = 5
features = input((inputs), np.float32)
label = input((outputs), np.float32)
test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)  
print('fea={}'.format(test_features))

z = load_model("myfirstmod.dnn")
ce = cross_entropy_with_softmax(z, label)
pe = classification_error(z, label)

lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)
progress_printer = ProgressPrinter(0)
trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])
avg_error = trainer.test_minibatch({z.arguments[0] : test_features, label : test_labels})
print(' error rate on an unseen minibatch: {}'.format(avg_error)) 



result1 = z.eval({z.arguments[0] : test_features}) 
#print("r={} ".format(result1)) 


out = softmax(z)
result = out.eval({z.arguments[0] : test_features}) 
print(result)


print("Label  :", [np.argmax(label) for label in test_labels])
print("Predicted  :", [np.argmax(label) for label in result])
#print("Predicted:", [np.argmax(result[i,:,:]) for i in range(result.shape[0])])


type1_x=[]
type1_y=[]

type2_x=[]
type2_y=[]

for i in range(len(test_labels)):
#for i in range(6):  
  if np.argmax(test_labels[i]) == 0:  
    type1_x.append( test_features[i][0] )  
    type1_y.append( test_features[i][1] ) 

  if np.argmax(test_labels[i]) == 1:  
    type2_x.append( test_features[i][0] )    
    type2_y.append( test_features[i][1] ) 


type1 = plt.scatter(type1_x, type1_y,s=40, c='red',marker='+' )  
type2 = plt.scatter(type2_x, type2_y, s=40, c='green',marker='+') 



nb_of_xs = 100
xs1 = np.linspace(2, 8, num=nb_of_xs)
xs2 = np.linspace(2, 8, num=nb_of_xs)
xx, yy = np.meshgrid(xs1, xs2) # create the grid

featureLine = np.vstack((np.array(xx).reshape(1,nb_of_xs*nb_of_xs),np.array(yy).reshape(1,yy.size)))
print(featureLine.T)
r = out.eval({z.arguments[0] : featureLine.T})

print(r)
# Initialize and fill the classification plane
classification_plane = np.zeros((nb_of_xs, nb_of_xs))


for i in range(nb_of_xs):
  for j in range(nb_of_xs):
    #classification_plane[i,j] = nn_predict(xx[i,j], yy[i,j])
    #r = out.eval({z.arguments[0] : [xx[i,j], yy[i,j]]})
    classification_plane[i,j] = np.argmax(r[i*nb_of_xs+j] )

print(classification_plane)
# Create a color map to show the classification colors of each grid point
cmap = ListedColormap([
    colorConverter.to_rgba('r', alpha=0.30),
    colorConverter.to_rgba('b', alpha=0.30)])
# Plot the classification plane with decision boundary and input samples
plt.contourf(xx, yy, classification_plane, cmap=cmap)


plt.xlabel('x1')  
plt.ylabel('x2')  
#axes.legend((type1, type2,type3), ('0', '1','2'),loc=1)  
plt.show()

代码内容:

1先生成模型。并打印出模型里面的参数

2调用模型,测试下模型错误率

3调用模型,输出结果

4将数据可视化

输出:dict_keys([‘features', ‘labels'])

Finished Epoch[1 of 2]: [Training] loss = 0.485836 * 12000, metric = 20.36% * 12000 0.377s (31830.2 samples/s);

Composite(Dense): Input(‘Input456', [#], [2]) -> Output(‘Block577_Output_0', [#], [2])

(Parameter(‘W', [], [50 x 2]), Parameter(‘b', [], [2]), Parameter(‘W', [], [2 x 50]), Parameter(‘b', [], [50]))

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

(Input(‘Input456', [#], [2]),)

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

()

(Parameter(‘W', [], [2 x 50]), Parameter(‘b', [], [50]))

Dense

Tensor[50]

Output(‘d1', [#], [50])

(Output(‘Block577_Output_0', [#], [2]),)

error rate on an unseen minibatch: 0.6

————-分割—————?

fea=[[ 2.74521399 3.6318233 ]

[ 3.45750308 3.8683207 ]

[ 3.49858737 4.31363964]

[ 9.01324368 1.75216711]

[ 9.15447521 7.21175623]]

average since average since examples

loss last metric last

error rate on an unseen minibatch: 0.2

[[ 0.57505184 0.42494816]

[ 0.70583773 0.29416227]

[ 0.67773896 0.32226101]

[ 0.04568771 0.95431226]

[ 0.95059013 0.04940984]]

Label : [0, 0, 0, 1, 1]

Predicted : [0, 0, 0, 1, 0]

[[ 2. 2. ]

[ 2.06060606 2. ]

[ 2.12121212 2. ]

…,

[ 7.87878788 8. ]

[ 7.93939394 8. ]

[ 8. 8. ]]

用python生成与调用cntk模型代码演示方法

Train2-noLiner_cntk_text 部分数据:

|features 1.480778 -1.265981 |labels 1 0

|features -0.592276 3.097171 |labels 0 1

|features 4.654565 1.054850 |labels 0 1

|features 6.124534 0.265861 |labels 0 1

|features 6.529863 1.347884 |labels 0 1

|features 2.330881 4.995633 |labels 0 1

|features 1.690045 0.171233 |labels 1 0

|features 2.101682 3.911253 |labels 0 1

|features 1.907487 0.201574 |labels 1 0

|features 5.141490 1.246433 |labels 0 1

|features 0.696826 0.481824 |labels 1 0

|features 3.305343 4.792150 |labels 1 0

|features 3.496849 -0.408635 |labels 1 0

|features 3.911750 0.205660 |labels 0 1

|features 5.154604 0.453434 |labels 0 1

|features 4.084166 2.718320 |labels 0 1

|features 5.544332 1.617196 |labels 0 1

|features -0.050979 0.466522 |labels 1 0

|features 5.168221 4.647089 |labels 1 0

|features 3.051973 0.864701 |labels 1 0

|features 5.989367 4.118536 |labels 1 0

|features 1.251041 -0.505563 |labels 1 0

|features 3.528092 0.319297 |labels 0 1

|features 6.907406 6.122889 |labels 1 0

|features 2.168320 0.546091 |labels 1 0

以上这篇用python生成与调用cntk模型代码演示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 可爱的大小写
Sep 06 Python
python自定义解析简单xml格式文件的方法
May 11 Python
深入理解NumPy简明教程---数组1
Dec 17 Python
Python错误: SyntaxError: Non-ASCII character解决办法
Jun 08 Python
Python实现购物车程序
Apr 16 Python
python3监控CentOS磁盘空间脚本
Jun 21 Python
Python3实现爬取简书首页文章标题和文章链接的方法【测试可用】
Dec 11 Python
python 利用turtle模块画出没有角的方格
Nov 23 Python
PyTorch中的padding(边缘填充)操作方式
Jan 03 Python
python 微信好友特征数据分析及可视化
Jan 07 Python
Python中 Global和Nonlocal的用法详解
Jan 20 Python
通过实例简单了解Python sys.argv[]使用方法
Aug 04 Python
python list转置和前后反转的例子
Aug 26 #Python
python3 map函数和filter函数详解
Aug 26 #Python
python爬虫 2019中国好声音评论爬取过程解析
Aug 26 #Python
解决Python计算矩阵乘向量,矩阵乘实数的一些小错误
Aug 26 #Python
对Python中一维向量和一维向量转置相乘的方法详解
Aug 26 #Python
python 中xpath爬虫实例详解
Aug 26 #Python
Python使用itchat模块实现群聊转发,自动回复功能示例
Aug 26 #Python
You might like
推荐几部必看的DC动画电影
2020/03/03 欧美动漫
一个分页的论坛
2006/10/09 PHP
PHP实现的激活用户注册验证邮箱功能示例
2017/06/06 PHP
PHP后台实现微信小程序登录
2018/08/03 PHP
php 使用expat方式解析xml文件操作示例
2019/11/26 PHP
JavaScript中的私有成员
2006/09/18 Javascript
Javascript Select操作大集合
2009/05/26 Javascript
jQuery Flash/MP3/Video多媒体插件
2010/01/18 Javascript
Dom在ajax技术中的作用说明
2010/10/25 Javascript
Jquery 表格合并的问题分享
2011/09/17 Javascript
限制textbox或textarea输入字符长度的JS代码
2013/10/16 Javascript
tangram框架响应式加载图片方法
2013/11/21 Javascript
NodeJS中Buffer模块详解
2015/01/07 NodeJs
8个超实用的jQuery功能代码分享
2015/01/08 Javascript
JS实现新浪微博效果带遮罩层的弹出框代码
2015/10/12 Javascript
jQuery animate easing使用方法图文详解
2016/06/17 Javascript
jquery submit()不能提交表单的解决方法
2017/04/24 jQuery
实现微信小程序的wxml文件和wxss文件在webstrom的支持
2017/06/12 Javascript
JS判断用户用的哪个浏览器实例详解
2018/10/09 Javascript
通过高德地图API获得某条道路上的所有坐标用于描绘道路的方法
2020/08/24 Javascript
[51:27]LGD vs Liquid 2019国际邀请赛小组赛 BO2 第二场 8.16
2019/08/19 DOTA
在Django中创建动态视图的教程
2015/07/15 Python
Python中的 sort 和 sorted的用法与区别
2019/08/10 Python
python pyqtgraph 保存图片到本地的实例
2020/03/14 Python
python+selenium自动化实战携带cookies模拟登陆微博
2021/01/19 Python
selenium+超级鹰实现模拟登录12306
2021/01/24 Python
美国指甲油品牌:Deco Miami
2017/01/30 全球购物
酒店实习个人鉴定
2013/12/07 职场文书
广告宣传策划方案
2014/05/21 职场文书
小学重阳节活动总结
2015/03/24 职场文书
证劵公司反洗钱宣传活动总结
2015/05/08 职场文书
2016大学生暑期社会实践心得体会
2016/01/14 职场文书
你会写报告?产品体验报告到底该怎么写?
2019/08/14 职场文书
python numpy中setdiff1d的用法说明
2021/04/22 Python
浅谈golang package中init方法的多处定义及运行顺序问题
2021/05/06 Golang
MySQL触发器的使用
2021/05/24 MySQL