Python人工智能之混合高斯模型运动目标检测详解分析


Posted in Python onNovember 07, 2021

【人工智能项目】混合高斯模型运动目标检测

Python人工智能之混合高斯模型运动目标检测详解分析

本次工作主要对视频中运动中的人或物的边缘背景进行检测。
那么走起来瓷!!!

原视频

Python人工智能之混合高斯模型运动目标检测详解分析

高斯算法提取工作

import cv2
import numpy as np

# 高斯算法
class gaussian:
    def __init__(self):
        self.mean = np.zeros((1, 3))
        self.covariance = 0
        self.weight = 0;
        self.Next = None
        self.Previous = None

class Node:
    def __init__(self):
        self.pixel_s = None
        self.pixel_r = None
        self.no_of_components = 0
        self.Next = None

class Node1:
    def __init__(self):
        self.gauss = None
        self.no_of_comp = 0
        self.Next = None

covariance0 = 11.0
def Create_gaussian(info1, info2, info3):
    ptr = gaussian()
    if (ptr is not None):
        ptr.mean[1, 1] = info1
        ptr.mean[1, 2] = info2
        ptr.mean[1, 3] = info3
        ptr.covariance = covariance0
        ptr.weight = 0.002
        ptr.Next = None
        ptr.Previous = None

    return ptr

def Create_Node(info1, info2, info3):
    N_ptr = Node()
    if (N_ptr is not None):
        N_ptr.Next = None
        N_ptr.no_of_components = 1
        N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3)

    return N_ptr

List_node = []
def Insert_End_Node(n):
    List_node.append(n)

List_gaussian = []
def Insert_End_gaussian(n):
    List_gaussian.append(n)

def Delete_gaussian(n):
    List_gaussian.remove(n);

class Process:
    def __init__(self, alpha, firstFrame):
        self.alpha = alpha
        self.background = firstFrame

    def get_value(self, frame):
        self.background = frame * self.alpha + self.background * (1 - self.alpha)
        return cv2.absdiff(self.background.astype(np.uint8), frame)

def denoise(frame):
    frame = cv2.medianBlur(frame, 5)
    frame = cv2.GaussianBlur(frame, (5, 5), 0)

    return frame

capture = cv2.VideoCapture('1.mp4')
ret, orig_frame = capture.read( )
if ret is True:
    value1 = Process(0.1, denoise(orig_frame))
    run = True
else:
    run = False

while (run):
    ret, frame = capture.read()
    value = False;
    if ret is True:
        cv2.imshow('input', denoise(frame))
        grayscale = value1.get_value(denoise(frame))
        ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY)
        cv2.imshow('mask', mask)
        key = cv2.waitKey(10) & 0xFF
    else:
        break

    if key == 27:
        break

    if value == True:
        orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC)
        orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY)
        orig_image_row = len(orig_frame)
        orig_image_col = orig_frame[0]

        bin_frame = np.zeros((orig_image_row, orig_image_col))
        value = []

        for i in range(0, orig_image_row):
            for j in range(0, orig_image_col):
                N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2])
                if N_ptr is not None:
                    N_ptr.pixel_s.weight = 1.0
                    Insert_End_Node(N_ptr)
                else:
                    print("error")
                    exit(0)

        nL = orig_image_row
        nC = orig_image_col

        dell = np.array((1, 3));
        mal_dist = 0.0;
        temp_cov = 0.0;
        alpha = 0.002;
        cT = 0.05;
        cf = 0.1;
        cfbar = 1.0 - cf;
        alpha_bar = 1.0 - alpha;
        prune = -alpha * cT;
        cthr = 0.00001;
        var = 0.0
        muG = 0.0;
        muR = 0.0;
        muB = 0.0;
        dR = 0.0;
        dB = 0.0;
        dG = 0.0;
        rval = 0.0;
        gval = 0.0;
        bval = 0.0;

        while (1):
            duration3 = 0.0;
            count = 0;
            count1 = 0;
            List_node1 = List_node;
            counter = 0;
            duration = cv2.getTickCount( );
            for i in range(0, nL):
                r_ptr = orig_frame[i]
                b_ptr = bin_frame[i]

                for j in range(0, nC):
                    sum = 0.0;
                    sum1 = 0.0;
                    close = False;
                    background = 0;

                    rval = r_ptr[0][0];
                    gval = r_ptr[0][0];
                    bval = r_ptr[0][0];

                    start = List_node1[counter].pixel_s;
                    rear = List_node1[counter].pixel_r;
                    ptr = start;

                    temp_ptr = None;
                    if (List_node1[counter].no_of_component > 4):
                        Delete_gaussian(rear);
                        List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;

                    for k in range(0, List_node1[counter].no_of_component):
                        weight = List_node1[counter].weight;
                        mult = alpha / weight;
                        weight = weight * alpha_bar + prune;
                        if (close == False):
                            muR = ptr.mean[0];
                            muG = ptr.mean[1];
                            muB = ptr.mean[2];

                            dR = rval - muR;
                            dG = gval - muG;
                            dB = bval - muB;

                            var = ptr.covariance;

                            mal_dist = (dR * dR + dG * dG + dB * dB);

                            if ((sum < cfbar) and (mal_dist < 16.0 * var * var)):
                                background = 255;

                            if (mal_dist < (9.0 * var * var)):
                                weight = weight + alpha;
                                if mult < 20.0 * alpha:
                                    mult = mult;
                                else:
                                    mult = 20.0 * alpha;

                                close = True;

                                ptr.mean[0] = muR + mult * dR;
                                ptr.mean[1] = muG + mult * dG;
                                ptr.mean[2] = muB + mult * dB;
                                temp_cov = var + mult * (mal_dist - var);
                                if temp_cov < 5.0:
                                    ptr.covariance = 5.0
                                else:
                                    if (temp_cov > 20.0):
                                        ptr.covariance = 20.0
                                    else:
                                        ptr.covariance = temp_cov;

                                temp_ptr = ptr;

                        if (weight < -prune):
                            ptr = Delete_gaussian(ptr);
                            weight = 0;
                            List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;
                        else:
                            sum += weight;
                            ptr.weight = weight;

                        ptr = ptr.Next;

                    if (close == False):
                        ptr = gaussian( );
                        ptr.weight = alpha;
                        ptr.mean[0] = rval;
                        ptr.mean[1] = gval;
                        ptr.mean[2] = bval;
                        ptr.covariance = covariance0;
                        ptr.Next = None;
                        ptr.Previous = None;
                        Insert_End_gaussian(ptr);
                        List_gaussian.append(ptr);
                        temp_ptr = ptr;
                        List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1;

                    ptr = start;
                    while (ptr != None):
                        ptr.weight = ptr.weight / sum;
                        ptr = ptr.Next;

                    while (temp_ptr != None and temp_ptr.Previous != None):
                        if (temp_ptr.weight <= temp_ptr.Previous.weight):
                            break;
                        else:
                            next = temp_ptr.Next;
                            previous = temp_ptr.Previous;
                            if (start == previous):
                                start = temp_ptr;
                                previous.Next = next;
                                temp_ptr.Previous = previous.Previous;
                                temp_ptr.Next = previous;
                            if (previous.Previous != None):
                                previous.Previous.Next = temp_ptr;
                            if (next != None):
                                next.Previous = previous;
                            else:
                                rear = previous;
                                previous.Previous = temp_ptr;

                        temp_ptr = temp_ptr.Previous;

                    List_node1[counter].pixel_s = start;
                    List_node1[counter].pixel_r = rear;
                    counter = counter + 1;

capture.release()
cv2.destroyAllWindows()

Python人工智能之混合高斯模型运动目标检测详解分析

createBackgroundSubtractorMOG2

  • 背景减法 (BS) 是一种常用且广泛使用的技术,用于通过使用静态相机生成前景蒙版(即,包含属于场景中运动物体的像素的二值图像)。
  • 顾名思义,BS 计算前景蒙版,在当前帧和背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般地说,根据观察到的场景的特征,可以将所有内容视为背景。

Python人工智能之混合高斯模型运动目标检测详解分析

背景建模包括两个主要步骤:

  • 后台初始化;
  • 背景更新。

在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。

import cv2

#构造VideoCapture对象
cap = cv2.VideoCapture('1.mp4')

# 创建一个背景分割器
# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值
# detectShadows=True,表示检测阴影,反之不检测阴影。默认是true
fgbg  = cv2.createBackgroundSubtractorMOG2()
while True :
    ret, frame = cap.read() # 读取视频
    fgmask = fgbg.apply(frame) # 背景分割
    cv2.imshow('frame', fgmask) # 显示分割结果
    if cv2.waitKey(100) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

Python人工智能之混合高斯模型运动目标检测详解分析

小结

点赞评论走起来,瓷们!!!

Python人工智能之混合高斯模型运动目标检测详解分析

到此这篇关于Python人工智能之混合高斯模型运动目标检测详解分析的文章就介绍到这了,更多相关Python 高斯模型运动目标检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
在漏洞利用Python代码真的很爽
Aug 26 Python
python多线程编程方式分析示例详解
Dec 06 Python
Python编程入门之Hello World的三种实现方式
Nov 13 Python
Python使用剪切板的方法
Jun 06 Python
Python创建二维数组实例(关于list的一个小坑)
Nov 07 Python
详解用Python实现自动化监控远程服务器
May 18 Python
pandas分区间,算频率的实例
Jul 04 Python
python3.6中@property装饰器的使用方法示例
Aug 17 Python
Pycharm远程连接服务器并实现代码同步上传更新功能
Feb 25 Python
Python 存取npy格式数据实例
Jul 01 Python
python for循环赋值问题
Jun 03 Python
Python开发简易五子棋小游戏
May 02 Python
7个关于Python的经典基础案例
Nov 07 #Python
python机器学习创建基于规则聊天机器人过程示例详解
Python中Numpy和Matplotlib的基本使用指南
python模块与C和C++动态库相互调用实现过程示例
Nov 02 #Python
Qt自定义Plot实现曲线绘制的详细过程
Nov 02 #Python
Python 正则模块详情
Nov 02 #Python
Python 数据可视化之Bokeh详解
Nov 02 #Python
You might like
Php做的端口嗅探器--可以指定网站和端口
2006/10/09 PHP
ThinkPHP水印功能实现修复PNG透明水印并增加JPEG图片质量可调整
2014/11/05 PHP
mac pecl 安装php7.1扩展教程
2019/10/17 PHP
JQuery获取浏览器窗口内容部分高度的代码
2012/02/24 Javascript
jquery实现不同大小浏览器使用不同的css样式表的方法
2014/04/02 Javascript
JavaScript常用脚本汇总(一)
2015/03/04 Javascript
JavaScript的Polymer框架中dom-repeat与VM的相关操作
2015/07/29 Javascript
IE和Firefox之间在JavaScript语法上的差异
2016/04/22 Javascript
Bootstrap模块dropdown实现下拉框响应
2016/05/22 Javascript
Angular4学习笔记之根模块与Ng模块
2017/09/09 Javascript
微信小程序 JS动态修改样式的实现方法
2018/12/16 Javascript
新手快速上手webpack4打包工具的使用详解
2019/01/28 Javascript
微信小程序收货地址API兼容低版本解决方法
2019/05/18 Javascript
layui实现根据table数据判断按钮显示情况的方法
2019/09/26 Javascript
详解JavaScript中精度失准问题及解决方法
2020/02/04 Javascript
[03:32]2014DOTA2西雅图邀请赛 CIS外卡赛赛前black专访
2014/07/09 DOTA
[00:37]食人魔魔法师轮盘吉兆顺应全新至宝将拥有额外款式
2019/12/19 DOTA
[10:05]DOTA2-DPC中国联赛 正赛 iG vs PSG.LGD 选手采访
2021/03/11 DOTA
Python多进程分块读取超大文件的方法
2016/04/13 Python
关于numpy中np.nonzero()函数用法的详解
2017/02/07 Python
Python处理中文标点符号大集合
2018/05/14 Python
python利用requests库进行接口测试的方法详解
2018/07/06 Python
django 将model转换为字典的方法示例
2018/10/16 Python
对python中的*args与**kwgs的含义与作用详解
2019/08/28 Python
python通过opencv实现图片裁剪原理解析
2020/01/19 Python
Pymysql实现往表中插入数据过程解析
2020/06/02 Python
Python如何实现远程方法调用
2020/08/07 Python
Python二元算术运算常用方法解析
2020/09/15 Python
百思买美国官网:Best Buy
2016/07/28 全球购物
毕业实习个人鉴定范文
2013/12/10 职场文书
求职自我评价范文100字
2014/09/23 职场文书
个人查摆问题整改措施
2014/10/04 职场文书
2014年环保局工作总结
2014/12/11 职场文书
解决MySQL存储时间出现不一致的问题
2021/04/28 MySQL
古见同学有交流障碍症 第二季宣传CM公开播出
2022/04/11 日漫
JS精髓原型链继承及构造函数继承问题纠正
2022/06/16 Javascript