Keras自动下载的数据集/模型存放位置介绍


Posted in Python onJune 19, 2020

Mac

# 数据集
~/.keras/datasets/

# 模型
~/.keras/models/

Linux

# 数据集
~/.keras/datasets/

Windows

# win10
C:\Users\user_name\.keras\datasets

补充知识:Keras_gan生成自己的数据,并保存模型

我就废话不多说了,大家还是直接看代码吧~

from __future__ import print_function, division
 
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import os
import matplotlib.pyplot as plt
import sys
import numpy as np
 
class GAN():
 def __init__(self):
 self.img_rows = 3
 self.img_cols = 60
 self.channels = 1
 self.img_shape = (self.img_rows, self.img_cols, self.channels)
 self.latent_dim = 100
 
 optimizer = Adam(0.0002, 0.5)
 
 # 构建和编译判别器
 self.discriminator = self.build_discriminator()
 self.discriminator.compile(loss='binary_crossentropy',
  optimizer=optimizer,
  metrics=['accuracy'])
 
 # 构建生成器
 self.generator = self.build_generator()
 
 # 生成器输入噪音,生成假的图片
 z = Input(shape=(self.latent_dim,))
 img = self.generator(z)
 
 # 为了组合模型,只训练生成器
 self.discriminator.trainable = False
 
 # 判别器将生成的图像作为输入并确定有效性
 validity = self.discriminator(img)
 
 # The combined model (stacked generator and discriminator)
 # 训练生成器骗过判别器
 self.combined = Model(z, validity)
 self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
 
 def build_generator(self):
 
 model = Sequential()
 model.add(Dense(64, input_dim=self.latent_dim))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 #np.prod(self.img_shape)=3x60x1
 model.add(Dense(np.prod(self.img_shape), activation='tanh'))
 model.add(Reshape(self.img_shape))
 
 model.summary()
 
 noise = Input(shape=(self.latent_dim,))
 img = model(noise)
 
 #输入噪音,输出图片
 return Model(noise, img)
 
 def build_discriminator(self):
 
 model = Sequential()
 
 model.add(Flatten(input_shape=self.img_shape))
 
 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(64))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(1, activation='sigmoid'))
 model.summary()
 
 img = Input(shape=self.img_shape)
 validity = model(img)
 return Model(img, validity)
 
 def train(self, epochs, batch_size=128, sample_interval=50):
 
 ############################################################
 #自己数据集此部分需要更改
 # 加载数据集
 data = np.load('data/相对大小分叉.npy') 
 data = data[:,:,0:60]
 # 归一化到-1到1
 data = data * 2 - 1
 data = np.expand_dims(data, axis=3)
 ############################################################
 
 # Adversarial ground truths
 valid = np.ones((batch_size, 1))
 fake = np.zeros((batch_size, 1))
 
 for epoch in range(epochs):
 
  # ---------------------
  # 训练判别器
  # ---------------------
 
  # data.shape[0]为数据集的数量,随机生成batch_size个数量的随机数,作为数据的索引
  idx = np.random.randint(0, data.shape[0], batch_size)
  
  #从数据集随机挑选batch_size个数据,作为一个批次训练
  imgs = data[idx]
  
  #噪音维度(batch_size,100)
  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
 
  # 由生成器根据噪音生成假的图片
  gen_imgs = self.generator.predict(noise)
 
  # 训练判别器,判别器希望真实图片,打上标签1,假的图片打上标签0
  d_loss_real = self.discriminator.train_on_batch(imgs, valid)
  d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
  d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
  # ---------------------
  # 训练生成器
  # ---------------------
 
  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
 
  # Train the generator (to have the discriminator label samples as valid)
  g_loss = self.combined.train_on_batch(noise, valid)
 
  # 打印loss值
  print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
 
  # 没sample_interval个epoch保存一次生成图片
  if epoch % sample_interval == 0:
  self.sample_images(epoch)
  if not os.path.exists("keras_model"):
   os.makedirs("keras_model")
  self.generator.save_weights("keras_model/G_model%d.hdf5" % epoch,True)
  self.discriminator.save_weights("keras_model/D_model%d.hdf5" %epoch,True)
 
 def sample_images(self, epoch):
 r, c = 10, 10
 # 重新生成一批噪音,维度为(100,100)
 noise = np.random.normal(0, 1, (r * c, self.latent_dim))
 gen_imgs = self.generator.predict(noise)
 
 # 将生成的图片重新归整到0-1之间
 gen = 0.5 * gen_imgs + 0.5
 gen = gen.reshape(-1,3,60)
 
 fig,axs = plt.subplots(r,c) 
 cnt = 0 
 for i in range(r): 
  for j in range(c): 
  xy = gen[cnt] 
  for k in range(len(xy)): 
   x = xy[k][0:30] 
   y = xy[k][30:60] 
   if k == 0: 
   axs[i,j].plot(x,y,color='blue') 
   if k == 1: 
   axs[i,j].plot(x,y,color='red') 
   if k == 2: 
   axs[i,j].plot(x,y,color='green') 
   plt.xlim(0.,1.)
   plt.ylim(0.,1.)
   plt.xticks(np.arange(0,1,0.1))
   plt.xticks(np.arange(0,1,0.1))
   axs[i,j].axis('off')
  cnt += 1 
 if not os.path.exists("keras_imgs"):
  os.makedirs("keras_imgs")
 fig.savefig("keras_imgs/%d.png" % epoch)
 plt.close()
 
 def test(self,gen_nums=100,save=False):
 self.generator.load_weights("keras_model/G_model4000.hdf5",by_name=True)
 self.discriminator.load_weights("keras_model/D_model4000.hdf5",by_name=True)
 noise = np.random.normal(0,1,(gen_nums,self.latent_dim))
 gen = self.generator.predict(noise)
 gen = 0.5 * gen + 0.5
 gen = gen.reshape(-1,3,60)
 print(gen.shape)
 ###############################################################
 #直接可视化生成图片
 if save:
  for i in range(0,len(gen)):
  plt.figure(figsize=(128,128),dpi=1)
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue',linewidth=300)
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red',linewidth=300)
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green',linewidth=300)
  plt.axis('off')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.yticks(np.arange(0,1,0.1))
  if not os.path.exists("keras_gen"):
   os.makedirs("keras_gen")
  plt.savefig("keras_gen"+os.sep+str(i)+'.jpg',dpi=1)
  plt.close()
 ##################################################################
 #重整图片到0-1
 else:
  for i in range(len(gen)):
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue')
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red')
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.xticks(np.arange(0,1,0.1))
  plt.show()
 
if __name__ == '__main__':
 gan = GAN()
 gan.train(epochs=300000, batch_size=32, sample_interval=2000)
# gan.test(save=True)

以上这篇Keras自动下载的数据集/模型存放位置介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的另外几种语言实现
Jan 29 Python
用Python制作简单的钢琴程序的教程
Apr 01 Python
python中如何使用正则表达式的非贪婪模式示例
Oct 09 Python
Python实现扣除个人税后的工资计算器示例
Mar 26 Python
Python获取二维矩阵每列最大值的方法
Apr 03 Python
使用python实现简单五子棋游戏
Jun 18 Python
python创建ArcGIS shape文件的实现
Dec 06 Python
python爬虫开发之PyQuery模块详细使用方法与实例全解
Mar 09 Python
python3通过qq邮箱发送邮件以及附件
May 20 Python
Python unittest基本使用方法代码实例
Jun 29 Python
python在CMD界面读取excel所有数据的示例
Sep 28 Python
浅谈Python数学建模之线性规划
Jun 23 Python
Python应用实现处理excel数据过程解析
Jun 19 #Python
在tensorflow以及keras安装目录查询操作(windows下)
Jun 19 #Python
Scrapy框架介绍之Puppeteer渲染的使用
Jun 19 #Python
Python内置方法和属性应用:反射和单例(推荐)
Jun 19 #Python
Python应用实现双指数函数及拟合代码实例
Jun 19 #Python
PyQT5 实现快捷键复制表格数据的方法示例
Jun 19 #Python
如何在keras中添加自己的优化器(如adam等)
Jun 19 #Python
You might like
php数组函数序列之array_splice() - 在数组任意位置插入元素
2011/11/07 PHP
str_replace只替换一次字符串的方法
2013/04/09 PHP
php中static和const关键字用法分析
2016/12/07 PHP
laravel 框架结合关联查询 when()用法分析
2019/11/22 PHP
JS控件autocomplete 0.11演示及下载 1月5日已更新
2007/01/09 Javascript
收集的一些Array及String原型对象的扩展实现代码
2010/12/05 Javascript
Jquery实现页面加载时弹出对话框代码
2013/04/19 Javascript
用javascript替换URL中的参数值示例代码
2014/01/27 Javascript
js的延迟执行问题分析
2014/06/23 Javascript
JavaScript中的索引数组、关联数组和静态数组、动态数组讲解
2014/11/08 Javascript
js实现从数组里随机获取元素
2015/01/12 Javascript
JavaScript使用pop方法移除数组最后一个元素用法实例
2015/04/06 Javascript
JQUERY实现网页右下角固定位置展开关闭特效的方法
2015/07/27 Javascript
通用无限极下拉菜单的实现代码
2016/05/31 Javascript
JavaScript从0开始构思表情插件
2016/07/26 Javascript
JQuery模拟实现网页中自定义鼠标右键菜单功能
2018/11/14 jQuery
通过JavaScript下载文件到本地的方法(单文件)
2019/03/17 Javascript
vue 兄弟组件的信息传递的方法实例详解
2019/08/30 Javascript
Vue 中 filter 与 computed 的区别与用法解析
2019/11/21 Javascript
vue实现放大镜效果
2020/09/17 Javascript
python 动态加载的实现方法
2017/12/22 Python
python 创建一个空dataframe 然后添加行数据的实例
2018/06/07 Python
python元组和字典的内建函数实例详解
2019/10/22 Python
Django 项目通过加载不同env文件来区分不同环境
2020/02/17 Python
香港彩色隐形眼镜在线商店:Stunninglens(全球免费送货)
2019/05/10 全球购物
程序集与命名空间有什么不同
2014/07/25 面试题
婚礼新郎父母答谢词
2014/01/16 职场文书
出生公证书样本
2014/04/04 职场文书
入股协议书
2014/04/14 职场文书
2014教师教育实践活动对照检查材料思想汇报
2014/09/21 职场文书
授权委托书协议书
2014/10/16 职场文书
单位接收函格式
2015/01/30 职场文书
预备党员个人总结
2015/02/14 职场文书
2015年市场部工作总结
2015/04/30 职场文书
创业计划书之酒厂
2019/10/14 职场文书
Python 数据科学 Matplotlib图库详解
2021/07/07 Python