在django项目中导出数据到excel文件并实现下载的功能


Posted in Python onMarch 13, 2020

依赖模块

xlwt下载:pip install xlwt

后台模块

view.py

# 导出Excel文件
def export_excel(request):
  city = request.POST.get('city')
  print(city)
  list_obj=place.objects.filter(city=city)
  # 设置HTTPResponse的类型
  response = HttpResponse(content_type='application/vnd.ms-excel')
  response['Content-Disposition'] = 'attachment;filename='+city+'.xls'
  """导出excel表"""
  if list_obj:
    # 创建工作簿
    ws = xlwt.Workbook(encoding='utf-8')
    # 添加第一页数据表
    w = ws.add_sheet('sheet1') # 新建sheet(sheet的名称为"sheet1")
    # 写入表头
    w.write(0, 0, u'地名')
    w.write(0, 1, u'次数')
    w.write(0, 2, u'经度')
    w.write(0, 3, u'纬度')
    # 写入数据
    excel_row = 1
    for obj in list_obj:
      name = obj.place
      sum = obj.sum
      lng = obj.lng
      lat = obj.lat
      # 写入每一行对应的数据
      w.write(excel_row, 0, name)
      w.write(excel_row, 1, sum)
      w.write(excel_row, 2, lng)
      w.write(excel_row, 3, lat)
      excel_row += 1
    # 写出到IO
    output = BytesIO()
    ws.save(output)
    # 重新定位到开始
    output.seek(0)
    response.write(output.getvalue())
  return response

前端模块

<button id="export_excel" type="button" class="btn btn-primary col-sm-5" style="margin-left: 10px" >导出excel</button>

$("#export_excel").click(function () {
     var csrf=$('input[name="csrfmiddlewaretoken"]').val();
     const req = new XMLHttpRequest();
     req.open('POST', '/export_excel/', true);
     req.responseType = 'blob';
     req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); //设置请求头
     req.send('city='+$('#city').val()+"&&csrfmiddlewaretoken="+csrf); //输入参数
     req.onload = function() {
       const data = req.response;
       const a = document.createElement('a');
       const blob = new Blob([data]);
       const blobUrl = window.URL.createObjectURL(blob);
       download(blobUrl) ;
     };

   });
function download(blobUrl) {
 var city = $("input[name='city']").val();
 const a = document.createElement('a');
 a.style.display = 'none';
 a.download = '<文件命名>';
 a.href = blobUrl;
 a.click();
 document.body.removeChild(a);
}

补充知识:Python Django实现MySQL百万、千万级的数据量下载:解决memoryerror、nginx time out

前文

在用Django写项目的时候时常需要提供文件下载的功能,而Django也是贴心提供了几种方法:FileResponse、StreamingHttpResponse、HttpResponse,其中FileResponse和StreamingHttpResponse都是使用迭代器迭代生成数据的方法,所以适合传输文件比较大的情况;而HttpResponse则是直接取得数据返回给用户,所以容易造成memoryerror和nginx time out(一次性取得数据和返回的数据过多,导致nginx超时或者内存不足),关于这三者,DJango的官网也是写的非常清楚,连接如下:https://docs.djangoproject.com/en/1.11/ref/request-response/

那正常我们使用的是FileResponse和StreamingHttpResponse,因为它们流式传输(迭代器)的特点,可以使得数据一条条的返回给客户端,文件随时中断和复传,并且保持文件的一致性。

FileResponse和StreamingHttpResponse

FileResponse顾名思义,就是打开文件然后进行传输,并且可以指定一次能够传输的数据chunk。所以适用场景:从服务端返回大文件。缺点是无法实时获取数据库的内容并传输给客户端。举例如下:

def download(request):
 file=open('path/demo.py','rb')
  response =FileResponse(file)
  response['Content-Type']='application/octet-stream'
  response['Content-Disposition']='attachment;filename="demo.py"'
  return response

从上可以发现,文件打开后作为参数传入FileResponse,随后指定传输头即可,但是很明显用这个来传输数据库就不太方便了,所以这边推介用StreamingHttpResponse的方式来传输。

这里就用PyMysql来取得数据,然后指定为csv的格式返回,具体代码如下:

# 通过pymysql取得数据
import pymysql
field_types = {
    1: 'tinyint',
    2: 'smallint',
    3: 'int'} #用于后面的字段名匹配,这里省略了大多数
conn = pymysql.connect(host='127.0.0.1',port=3306,database='demo',user='root',password='root')
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
cursor.execute(sql)
#获取所有数据
data = cursor.fetchall()
cols = {}
#获取所有字段
for i,row in enumerate(self.cursor.description):
 if row[0] in cols:
   cols[str(i)+row[0]] = field_types.get(row[1], str(row[1])) #这里的field_type是类型和数字的匹配
 cols[row[0]] = field_types.get(row[1], str(row[1]))
cursor.close()
conn.close()

#通过StreamingHttpResponse指定返回格式为csv
response = StreamingHttpResponse(get_result_fromat(data, cols))
response['Content-Type'] = 'application/octet-stream'
response['Content-Disposition'] = 'attachment;filename="{0}"'.format(out_file_name)
return response

#循环所有数据,然后加到字段上返回,注意的是要用迭代器来控制
def get_result_fromat(data, cols):
 tmp_str = ""
 # 返回文件的每一列列名
  for col in cols:
    tmp_str += '"%s",' % (col)
  yield tmp_str.strip(",") + "\n"
  for row in data:
    tmp_str = ""
    for col in cols:
      tmp_str += '"%s",' % (str(row[col]))
    yield tmp_str.strip(',') + "\n"

整个代码如上,大致分为三部分:从mysql取数据,格式化成我们想要的格式:excel、csv、txt等等,这边指定的是csv,如果对其他格式也有兴趣的可以留言,最后就是用StreamingHttpResponse指定返回的格式返回。

实现百万级数据量下载

上面的代码下载可以支持几万行甚至十几万行的数据,但是如果超过20万行以上的数据,那就比较困难了,我这边的剩余内存大概是1G的样子,当超过15万行数据(大概)的时候,就报memoryerror了,问题就是因为fetchall,虽然我们StreamingHttpResponse是一条条的返回,但是我们的数据时一次性批量的取得!

如何解决?以下是我的解决方法和思路:

用fetchone来代替fetchall,迭代生成fetchone

发现还是memoryerror,因为execute是一次性执行,后来发现可以用流式游标来代替原来的普通游标,即SSDictCursor代替DictCursor

于是整个代码需要修改的地方如下:

cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) ===>
cursor = conn.cursor(cursor=pymysql.cursors.SSDictCursor)

data = cursor.fetchall() ===>
row = cursor.fetchone()

def get_result_fromat(data, cols):
 tmp_str = ""
 # 返回文件的每一列列名
  for col in cols:
    tmp_str += '"%s",' % (col)
  yield tmp_str.strip(",") + "\n"
  for row in data:
    tmp_str = ""
    for col in cols:
      tmp_str += '"%s",' % (str(row[col]))
    yield tmp_str.strip(',') + "\n" 
    
    =====>
    
def get_result_fromat(data, cols):
 tmp_str = ""
  for col in cols:
    tmp_str += '"%s",' % (col)
  yield tmp_str.strip(",") + "\n"
  while True:
    tmp_str = ""
    for col in cols:
      tmp_str += '"%s",' % (str(row[col]))
    yield tmp_str.strip(',') + "\n"
    row = db.cursor.fetchone()
    if row is None:
      break

可以看到就是通过while True来实现不断地取数据下载,有效避免一次性从MySQL取出内存不足报错,又或者取得过久导致nginx超时!

总结

关于下载就分享到这了,还是比较简单的,谢谢观看~希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用cPickle模块序列化实例
Sep 25 Python
在Python中用keys()方法返回字典键的教程
May 21 Python
编写Python CGI脚本的教程
Jun 29 Python
通过Python模块filecmp 对文件比较的实现方法
Jun 29 Python
Python设计模式之策略模式实例详解
Jan 21 Python
python 读取dicom文件,生成info.txt和raw文件的方法
Jan 24 Python
在Python文件中指定Python解释器的方法
Feb 18 Python
Python3.5 Json与pickle实现数据序列化与反序列化操作示例
Apr 29 Python
Python解决pip install时出现的Could not fetch URL问题
Aug 01 Python
python3-flask-3将信息写入日志的实操方法
Nov 12 Python
PyCharm中Matplotlib绘图不能显示UI效果的问题解决
Mar 12 Python
python如何利用paramiko执行服务器命令
Nov 07 Python
Django choices下拉列表绑定实例
Mar 13 #Python
django model object序列化实例
Mar 13 #Python
浅析python标准库中的glob
Mar 13 #Python
Python3标准库glob文件名模式匹配的问题
Mar 13 #Python
python编写俄罗斯方块
Mar 13 #Python
探秘TensorFlow 和 NumPy 的 Broadcasting 机制
Mar 13 #Python
自定义Django Form中choicefield下拉菜单选取数据库内容实例
Mar 13 #Python
You might like
简单采集了yahoo的一些数据
2007/02/14 PHP
获取php页面执行时间,数据库读写次数,函数调用次数等(THINKphp)
2013/06/03 PHP
PHP5.3新特性小结
2016/02/14 PHP
PHP的Laravel框架中使用AdminLTE模板来编写网站后台界面
2016/03/21 PHP
Laravel ORM 数据model操作教程
2019/10/21 PHP
Prototype使用指南之dom.js
2007/01/10 Javascript
jquery图片放大功能简单实现
2013/08/01 Javascript
JS正则表达式大全(整理详细且实用)
2013/11/14 Javascript
node.js中的fs.openSync方法使用说明
2014/12/17 Javascript
jQuery+easyui中的combobox实现下拉框特效
2015/02/27 Javascript
JavaScript中const、var和let区别浅析
2016/10/11 Javascript
BootStrap Table对前台页面表格的支持实例讲解
2016/12/22 Javascript
jQuery实现的分页功能示例
2017/01/22 Javascript
jQuery Jsonp跨域模拟搜索引擎
2017/06/17 jQuery
深入理解 webpack 文件打包机制(小结)
2018/01/08 Javascript
详解vue-cli项目中怎么使用mock数据
2018/05/29 Javascript
微信小程序textarea层级过高(盖住其他元素)问题的解决办法
2019/03/04 Javascript
nodejs二进制与Buffer的介绍与使用
2019/07/11 NodeJs
关于Vue中axios的封装实例详解
2019/10/20 Javascript
JS this关键字在ajax中使用出现问题解决方案
2020/07/17 Javascript
使用Python从有道词典网页获取单词翻译
2016/07/03 Python
Python实现确认字符串是否包含指定字符串的实例
2018/05/02 Python
python抓取京东小米8手机配置信息
2018/11/13 Python
django session完成状态保持的方法
2018/11/27 Python
浅谈Python中(&amp;,|)和(and,or)之间的区别
2019/08/07 Python
pandas中read_csv、rolling、expanding用法详解
2020/04/21 Python
Python中实现输入一个整数的案例
2020/05/03 Python
python对 MySQL 数据库进行增删改查的脚本
2020/10/22 Python
python绘制汉诺塔
2021/03/01 Python
洛杉矶健身中心女性专用运动服饰品牌:Marika
2018/05/09 全球购物
名词解释型面试题(主要是网络)
2013/12/27 面试题
银行先进个人事迹材料
2014/05/11 职场文书
雷锋式好少年事迹材料
2014/08/17 职场文书
教师节主题班会教案
2015/08/17 职场文书
用React Native制作一个简单的游戏引擎
2021/05/27 Javascript
用python画城市轮播地图
2021/05/28 Python