Pandas 缺失数据处理的实现


Posted in Python onNovember 04, 2019

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。

使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN表示不是数字的值。

一、检查缺失值

为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法

示例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
         index=['a', 'c', 'e', 'f','h'],
         columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df['one'].isnull())

输出结果:

        one       two     three
a  0.036297 -0.615260 -1.341327
b       NaN       NaN       NaN
c -1.908168 -0.779304  0.212467
d       NaN       NaN       NaN
e  0.527409 -2.432343  0.190436
f  1.428975 -0.364970  1.084148
g       NaN       NaN       NaN
h  0.763328 -0.818729  0.240498

a    False
b     True
c    False
d     True
e    False
f    False
g     True
h    False
Name: one, dtype: bool

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df['one'].notnull())

输出结果:
a     True
b    False
c     True
d    False
e     True
f     True
g    False
h     True
Name: one, dtype: bool

二、缺少数据的计算

  • 在求和数据时,NA将被视为0
  • 如果数据全部是NA,那么结果将是NA

实例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df['one'].sum())

输出结果:

        one       two     three
a -1.191036  0.945107 -0.806292
b       NaN       NaN       NaN
c  0.127794 -1.812588 -0.466076
d       NaN       NaN       NaN
e  2.358568  0.559081  1.486490
f -0.242589  0.574916 -0.831853
g       NaN       NaN       NaN
h -0.328030  1.815404 -1.706736

0.7247067964060545 

示例2

import pandas as pd

df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two'])

print(df)
print('\n')

print (df['one'].sum())

输出结果:

   one  two
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  NaN  NaN
4  NaN  NaN
5  NaN  NaN

0

三、填充缺少数据

Pandas提供了各种方法来清除缺失的值。fillna()函数可以通过几种方法用非空数据“填充”NA值。

用标量值替换NaN

以下程序显示如何用0替换NaN。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three'])

df = df.reindex(['a', 'b', 'c'])

print (df)
print('\n')

print ("NaN replaced with '0':")
print (df.fillna(0))

输出结果:

        one       two     three
a -0.479425 -1.711840 -1.453384
b       NaN       NaN       NaN
c -0.733606 -0.813315  0.476788

NaN replaced with '0':
        one       two     three
a -0.479425 -1.711840 -1.453384
b  0.000000  0.000000  0.000000
c -0.733606 -0.813315  0.476788

在这里填充零值; 当然,也可以填写任何其他的值。

替换丢失(或)通用值

很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。用标量值替换NA是fillna()函数的等效行为。

示例

import pandas as pd

df = pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]})

print(df)
print('\n')

print (df.replace({1000:10,2000:60}))

输出结果:

    one   two
0    10  1000
1    20     0
2    30    30
3    40    40
4    50    50
5  2000    60

   one  two
0   10   10
1   20    0
2   30   30
3   40   40
4   50   50
5   60   60

填写NA前进和后退

使用重构索引章节讨论的填充概念,来填补缺失的值。

方法 动作
pad/fill 填充方法向前
bfill/backfill 填充方法向后

示例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df.fillna(method='pad'))

输出结果:

        one       two     three
a -0.023243  1.671621 -1.687063
b       NaN       NaN       NaN
c -0.933355  0.609602 -0.620189
d       NaN       NaN       NaN
e  0.151455 -1.324563 -0.598897
f  0.605670 -0.924828 -1.050643
g       NaN       NaN       NaN
h  0.892414 -0.137194 -1.101791

        one       two     three
a -0.023243  1.671621 -1.687063
b -0.023243  1.671621 -1.687063
c -0.933355  0.609602 -0.620189
d -0.933355  0.609602 -0.620189
e  0.151455 -1.324563 -0.598897
f  0.605670 -0.924828 -1.050643
g  0.605670 -0.924828 -1.050643
h  0.892414 -0.137194 -1.101791

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.fillna(method='backfill'))

输出结果:

        one       two     three
a  2.278454  1.550483 -2.103731
b -0.779530  0.408493  1.247796
c -0.779530  0.408493  1.247796
d  0.262713 -1.073215  0.129808
e  0.262713 -1.073215  0.129808
f -0.600729  1.310515 -0.877586
g  0.395212  0.219146 -0.175024
h  0.395212  0.219146 -0.175024

四、丢失缺少的值

使用dropna函数和axis参数。 默认情况下,axis = 0,即在行上应用,这意味着如果行内的任何值是NA,那么整个行被排除。

实例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.dropna())

输出结果 :

        one       two     three
a -0.719623  0.028103 -1.093178
c  0.040312  1.729596  0.451805
e -1.029418  1.920933  1.289485
f  1.217967  1.368064  0.527406
h  0.667855  0.147989 -1.035978

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.dropna(axis=1))

输出结果:

Empty DataFrame
Columns: []
Index: [a, b, c, d, e, f, g, h]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python函数学习笔记
Oct 07 Python
Hadoop中的Python框架的使用指南
Apr 22 Python
Python写的一个定时重跑获取数据库数据
Dec 28 Python
python3实现全角和半角字符转换的方法示例
Sep 21 Python
Python lambda函数基本用法实例分析
Mar 16 Python
解决Python 命令行执行脚本时,提示导入的包找不到的问题
Jan 19 Python
Python+Selenium+phantomjs实现网页模拟登录和截图功能(windows环境)
Dec 11 Python
python数据预处理 :数据抽样解析
Feb 24 Python
浅谈matplotlib.pyplot与axes的关系
Mar 06 Python
Android Q之气泡弹窗的实现示例
Jun 23 Python
python爬虫中url管理器去重操作实例
Nov 30 Python
python中os.path.join()函数实例用法
May 26 Python
python tkinter canvas使用实例
Nov 04 #Python
python matplotlib饼状图参数及用法解析
Nov 04 #Python
python制作朋友圈九宫格图片
Nov 03 #Python
python使用yield压平嵌套字典的超简单方法
Nov 02 #Python
基于python实现从尾到头打印链表
Nov 02 #Python
pandas 空数据处理方法详解
Nov 02 #Python
python pyinstaller打包exe报错的解决方法
Nov 02 #Python
You might like
动漫女神老婆无限好,但日本女生可能就不是这么一回事了!
2020/03/04 日漫
php heredoc和phpwind的模板技术使用方法小结
2008/03/28 PHP
phpmyadmin config.inc.php配置示例
2013/08/27 PHP
php实现随机生成易于记忆的密码
2015/06/19 PHP
PHP5.5迭代生成器用法实例详解
2016/03/16 PHP
PHP预定义变量9大超全局数组用法详解
2016/04/23 PHP
js改变文章字体大小的实例代码
2013/11/27 Javascript
Javascript前端UI框架Kit使用指南之Kitjs简介
2014/11/28 Javascript
JavaScript设计模式初探
2016/01/07 Javascript
轻松掌握JavaScript中介者模式
2016/08/26 Javascript
jquery层级选择器(匹配父元素下的子元素实现代码)
2016/09/05 Javascript
微信小程序中使元素占满整个屏幕高度实现方法
2016/12/14 Javascript
使用jQuery实现页面定时弹出广告效果
2017/08/24 jQuery
Vue中 key keep-alive的实现原理
2018/09/18 Javascript
js中获取URL参数的共用方法getRequest()方法实例详解
2018/10/24 Javascript
M2实现Nodejs项目自动部署的方法步骤
2019/05/05 NodeJs
vue实现手机号码的校验实例代码(防抖函数的应用场景)
2019/09/05 Javascript
详解Vue中的MVVM原理和实现方法
2020/07/15 Javascript
如何使用RoughViz可视化Vue.js中的草绘图表
2021/01/30 Vue.js
[06:07]刀塔密之二:攻之吾命受之吾幸
2014/07/03 DOTA
Python中用Decorator来简化元编程的教程
2015/04/13 Python
python3新特性函数注释Function Annotations用法分析
2016/07/28 Python
Python学习教程之常用的内置函数大全
2017/07/14 Python
Django中Model的使用方法教程
2018/03/07 Python
基于python的ini配置文件操作工具类
2019/04/24 Python
python将视频转换为全字符视频
2019/04/26 Python
opencv resize图片为正方形尺寸的实现方法
2019/12/26 Python
python去除删除数据中\u0000\u0001等unicode字符串的代码
2020/03/06 Python
用Python爬取LOL所有的英雄信息以及英雄皮肤的示例代码
2020/07/13 Python
会计出纳岗位职责
2013/12/25 职场文书
简历自我评价模版
2014/01/31 职场文书
个人党性剖析材料
2014/02/03 职场文书
美容院店长岗位职责
2014/04/08 职场文书
购房委托书范本
2014/09/18 职场文书
高校自主招生自荐信2015
2015/03/04 职场文书
Python机器学习之底层实现KNN
2021/06/20 Python