Python中的十大图像处理工具(小结)


Posted in Python onJune 10, 2019

Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。本文主要介绍了一些简单易懂最常用的Python图像处理库。

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。

图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。 Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。

让我们看一下用于图像处理任务的一些常用Python库。

1. scikit Image

scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。

使用说明文档:https://scikit-image.org/docs/stable/user_guide.html

用法举例:图像过滤、模版匹配

可使用“skimage”来导入该库。大多数功能都能在子模块中找到。

import matplotlib.pyplot as plt 
%matplotlib inline 
from skimage import data,filters 
image = data.coins() 
# ... or any other NumPy array! 
edges = filters.sobel(image) 
plt.imshow(edges, cmap='gray')

Python中的十大图像处理工具(小结)

模版匹配(使用match_template函数)

Python中的十大图像处理工具(小结)

gallery上还有更多例子。

https://scikit-image.org/docs/dev/auto_examples/

2. Numpy

Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作——例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。

使用说明文档:http://www.numpy.org/

用法举例:使用Numpy来对图像进行脱敏处理

import numpy as np 
from skimage import data 
import matplotlib.pyplot as plt 
%matplotlib inline 
image = data.camera() 
type(image) 
numpy.ndarray #Image is a numpy array 
mask = image < 87 
image[mask]=255 
plt.imshow(image, cmap='gray')

Python中的十大图像处理工具(小结)

3. Scipy

scipy是Python的另一个核心科学模块,就像Numpy一样,可用于基本的图像处理和处理任务。值得一提的是,子模块scipy.ndimage提供了在n维NumPy数组上运行的函数。 该软件包目前包括线性和非线性滤波、二进制形态、B样条插值和对象测量等功能。

使用说明文档:

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution

用法举例:使用SciPy的高斯滤波器对图像进行模糊处理

from scipy import misc,ndimage 
face = misc.face() 
blurred_face = ndimage.gaussian_filter(face, sigma=3) 
very_blurred = ndimage.gaussian_filter(face, sigma=5) 
#Results 
plt.imshow(<image to be displayed>)

Python中的十大图像处理工具(小结)

4. PIL/ Pillow

PIL (Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开、处理和保存许多不同图像文件格式的支持。 然而,它的发展停滞不前,其最后一次更新还是在2009年。幸运的是, PIL有一个正处于积极开发阶段的分支Pillow,它非常易于安装。Pillow能在所有主要操作系统上运行并支持Python 3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积内核进行过滤以及颜色空间转换。

使用说明文档:https://pillow.readthedocs.io/en/3.1.x/index.html

用法举例:使用ImageFilter增强Pillow中的图像

from PIL import Image, ImageFilter 
#Read image 
im = Image.open( 'image.jpg' ) 
#Display image 
im.show() 
from PIL import ImageEnhance 
enh = ImageEnhance.Contrast(im) 
enh.enhance(1.8).show("30% more contrast")

Python中的十大图像处理工具(小结)

5. OpenCV-Python

OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。

使用说明文档:https://github.com/abidrahmank/OpenCV2-Python-Tutorials

用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能

Python中的十大图像处理工具(小结)

6. SimpleCV

SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是:

即使是初学者也可以编写简单的机器视觉测试

摄像机、视频文件、图像和视频流都可以交互操作

使用说明文档:https://simplecv.readthedocs.io/en/latest/

用法举例

Python中的十大图像处理工具(小结)

7. Mahotas

Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。

使用说明文档:

https://mahotas.readthedocs.io/en/latest/install.html

用法举例

Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。

Python中的十大图像处理工具(小结)

Python中的十大图像处理工具(小结)

8. SimpleITK

ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。

使用说明文档:https://github.com/hhatto/pgmagick

这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。

用法举例:

下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。

Python中的十大图像处理工具(小结)

9. pgmagick

pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。

使用说明文档:https://github.com/hhatto/pgmagick

用法举例:图片缩放、边缘提取

Python中的十大图像处理工具(小结)

图片缩放

Python中的十大图像处理工具(小结)

边缘提取

10. Pycairo

Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。

使用说明文档:https://github.com/pygobject/pycairo

用法:Pycairo可以绘制线条、基本形状和径向渐变

Python中的十大图像处理工具(小结)

以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧。希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python序列操作之进阶篇
Dec 08 Python
利用Hyperic调用Python实现进程守护
Jan 02 Python
TensorFlow 模型载入方法汇总(小结)
Jun 19 Python
python可视化爬虫界面之天气查询
Jul 03 Python
Django 创建/删除用户的示例代码
Jul 24 Python
python super的使用方法及实例详解
Sep 25 Python
浅谈对pytroch中torch.autograd.backward的思考
Dec 27 Python
pytorch::Dataloader中的迭代器和生成器应用详解
Jan 03 Python
Pycharm中Python环境配置常见问题解析
Jan 16 Python
python计算Content-MD5并获取文件的Content-MD5值方式
Apr 03 Python
Python2.x与3​​.x版本有哪些区别
Jul 09 Python
python opencv实现直线检测并测出倾斜角度(附源码+注释)
Dec 31 Python
在python下使用tensorflow判断是否存在文件夹的实例
Jun 10 #Python
Python函数参数匹配模型通用规则keyword-only参数详解
Jun 10 #Python
python 判断文件还是文件夹的简单实例
Jun 10 #Python
python实现植物大战僵尸游戏实例代码
Jun 10 #Python
python中的协程深入理解
Jun 10 #Python
Python中asyncio模块的深入讲解
Jun 10 #Python
Python中的asyncio代码详解
Jun 10 #Python
You might like
第七节 类的静态成员 [7]
2006/10/09 PHP
基于PHP与XML的PDF文档生成技术
2006/10/09 PHP
php中判断一个字符串包含另一个字符串的方法
2007/03/19 PHP
PHP开启gzip页面压缩实例代码
2010/03/11 PHP
PHP 命令行参数详解及应用
2011/05/18 PHP
php设置session值和cookies的学习示例
2014/03/21 PHP
浅析THINKPHP的addAll支持的最大数据量
2015/02/03 PHP
基于PHP实现商品成交时发送短信功能
2016/05/11 PHP
EasyUI中的tree用法介绍
2011/11/01 Javascript
javascript中call,apply,bind的用法对比分析
2015/02/12 Javascript
jquery 重写 ajax提交并判断权限后 使用load方法报错解决方法
2016/01/19 Javascript
AngularJS表单验证功能分析
2017/05/26 Javascript
微信小程序实现页面跳转传值的方法
2017/10/12 Javascript
JS实现定时任务每隔N秒请求后台setInterval定时和ajax请求问题
2017/10/15 Javascript
JS中利用FileReader实现上传图片前本地预览功能
2018/03/02 Javascript
vue-cli 3.x 配置Axios(proxyTable)跨域代理方法
2018/09/19 Javascript
Vue3.x源码调试的实现方法
2019/10/13 Javascript
python使用PIL模块实现给图片打水印的方法
2015/05/22 Python
python3调用R的示例代码
2018/02/23 Python
pycharm配置git(图文教程)
2019/08/16 Python
Python matplotlib绘制饼状图功能示例
2019/09/10 Python
Django使用Profile扩展User模块方式
2020/05/14 Python
python使用建议与技巧分享(一)
2020/08/17 Python
Jupyter Notebook安装及使用方法解析
2020/11/12 Python
CSS3中Transition动画属性用法详解
2016/07/04 HTML / CSS
解决HTML5手机端页面缩放的问题
2017/10/27 HTML / CSS
精选奢华:THE LIST
2019/09/05 全球购物
美国球迷装备的第一来源:FOCO
2020/07/03 全球购物
个人求职信范文分享
2014/01/31 职场文书
暑期社会实践方案
2014/02/05 职场文书
高中竞选班长演讲稿
2014/04/24 职场文书
2015年党建工作汇报材料
2015/06/25 职场文书
体育部部长竞选稿
2015/11/21 职场文书
《玩出了名堂》教学反思
2016/02/17 职场文书
教你使用Python pypinyin库实现汉字转拼音
2021/05/27 Python
Python绘制散乱的点构成的图的方法
2022/04/21 Python