Python绘图Matplotlib之坐标轴及刻度总结


Posted in Python onJune 28, 2019

学习https://matplotlib.org/gallery/index.html 记录,描述不一定准确,具体请参考官网

Matplotlib使用总结图

Python绘图Matplotlib之坐标轴及刻度总结

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

import pandas as pd
import numpy as np

新建隐藏坐标轴

from mpl_toolkits.axisartist.axislines import SubplotZero
import numpy as np

fig = plt.figure(1, (10, 6))

ax = SubplotZero(fig, 1, 1, 1)
fig.add_subplot(ax)

"""新建坐标轴"""
ax.axis["xzero"].set_visible(True)
ax.axis["xzero"].label.set_text("新建y=0坐标")
ax.axis["xzero"].label.set_color('green')
# ax.axis['yzero'].set_visible(True)
# ax.axis["yzero"].label.set_text("新建x=0坐标")

# 新建一条y=2横坐标轴
ax.axis["新建1"] = ax.new_floating_axis(nth_coord=0, value=2,axis_direction="bottom")
ax.axis["新建1"].toggle(all=True)
ax.axis["新建1"].label.set_text("y = 2横坐标")
ax.axis["新建1"].label.set_color('blue')

"""坐标箭头"""
ax.axis["xzero"].set_axisline_style("-|>")

"""隐藏坐标轴"""
# 方法一:隐藏上边及右边
# ax.axis["right"].set_visible(False)
# ax.axis["top"].set_visible(False)
#方法二:可以一起写
ax.axis["top",'right'].set_visible(False)
# 方法三:利用 for in
# for n in ["bottom", "top", "right"]:
#  ax.axis[n].set_visible(False)

"""设置刻度"""
ax.set_ylim(-3, 3)
ax.set_yticks([-1,-0.5,0,0.5,1])
ax.set_xlim([-5, 8])
# ax.set_xticks([-5,5,1])

#设置网格样式
ax.grid(True, linestyle='-.')


xx = np.arange(-4, 2*np.pi, 0.01)
ax.plot(xx, np.sin(xx))


# 于 offset 处新建一条纵坐标
offset = (40, 0)
new_axisline = ax.get_grid_helper().new_fixed_axis
ax.axis["新建2"] = new_axisline(loc="right", offset=offset, axes=ax)
ax.axis["新建2"].label.set_text("新建纵坐标")
ax.axis["新建2"].label.set_color('red')


plt.show()
# 存为图像
# fig.savefig('test.png')

Python绘图Matplotlib之坐标轴及刻度总结

from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
import matplotlib.pyplot as plt

host = host_subplot(111, axes_class=AA.Axes)
plt.subplots_adjust(right=0.75)

par1 = host.twinx()
par2 = host.twinx()

offset = 100
new_fixed_axis = par2.get_grid_helper().new_fixed_axis
par2.axis["right"] = new_fixed_axis(loc="right",
         axes=par2,
         offset=(offset, 0))

par1.axis["right"].toggle(all=True)
par2.axis["right"].toggle(all=True)

host.set_xlim(0, 2)
host.set_ylim(0, 2)

host.set_xlabel("Distance")
host.set_ylabel("Density")
par1.set_ylabel("Temperature")
par2.set_ylabel("Velocity")

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")

par1.set_ylim(0, 4)
par2.set_ylim(1, 65)

host.legend()

host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
par2.axis["right"].label.set_color(p3.get_color())

plt.draw()
plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

# 第二坐标
fig, ax_f = plt.subplots()
# 这步是关键
ax_c = ax_f.twinx()
ax_d = ax_f.twiny()

# automatically update ylim of ax2 when ylim of ax1 changes.
# ax_f.callbacks.connect("ylim_changed", convert_ax_c_to_celsius)
ax_f.plot(np.linspace(-40, 120, 100))
ax_f.set_xlim(0, 100)

# ax_f.set_title('第二坐标', size=14)
ax_f.set_ylabel('Y轴',color='r')
ax_f.set_xlabel('X轴',color='c')

ax_c.set_ylabel('第二Y轴', color='b')
ax_c.set_yticklabels(["$0$", r"$\frac{1}{2}\pi$", r"$\pi$", r"$\frac{3}{2}\pi$", r"$2\pi$"])
# ax_c.set_ylim(1,5)

ax_d.set_xlabel('第二X轴', color='g')
ax_d.set_xlim(-1,1)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

刻度及标记

import mpl_toolkits.axisartist.axislines as axislines


fig = plt.figure(1, figsize=(10, 6))
fig.subplots_adjust(bottom=0.2)

# 子图1
ax1 = axislines.Subplot(fig, 131)
fig.add_subplot(ax1)
# for axis in ax.axis.values():
#  axis.major_ticks.set_tick_out(True) # 标签全部在外部
ax1.axis[:].major_ticks.set_tick_out(True) # 这句和上面的for循环功能相同
ax1.axis["left"].label.set_text("子图1 left标签") # 显示在左边
# 设置刻度
ax1.set_yticks([2,4,6,8])
ax1.set_xticks([0.2,0.4,0.6,0.8])

# 子图2
ax2 = axislines.Subplot(fig, 132)
fig.add_subplot(ax2)
ax2.set_yticks([1,3,5,7])
ax2.set_yticklabels(('one','two','three', 'four', 'five')) # 不显示‘five'
ax2.set_xlim(5, 0) # X轴刻度
ax2.axis["left"].set_axis_direction("right")
ax2.axis["left"].label.set_text("子图2 left标签") # 显示在右边
ax2.axis["bottom"].set_axis_direction("top")
ax2.axis["right"].set_axis_direction("left")
ax2.axis["top"].set_axis_direction("bottom")

# 子图3
ax3 = axislines.Subplot(fig, 133)
fig.add_subplot(ax3)
# 前两位表示X轴范围,后两位表示Y轴范围
ax3.axis([40, 160, 0, 0.03])
ax3.axis["left"].set_axis_direction("right")
ax3.axis[:].major_ticks.set_tick_out(True)

ax3.axis["left"].label.set_text("Long Label Left")
ax3.axis["bottom"].label.set_text("Label Bottom")
ax3.axis["right"].label.set_text("Long Label Right")
ax3.axis["right"].label.set_visible(True)
ax3.axis["left"].label.set_pad(0)
ax3.axis["bottom"].label.set_pad(20)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import matplotlib.ticker as ticker

# Fixing random state for reproducibility
np.random.seed(19680801)

fig, ax = plt.subplots()
ax.plot(100*np.random.rand(20))

# 设置 y坐标轴刻度
formatter = ticker.FormatStrFormatter('$%1.2f')
ax.yaxis.set_major_formatter(formatter)

# 刻度
for tick in ax.yaxis.get_major_ticks():
 tick.label1On = True # label1On 左边纵坐标
 tick.label2On = True # label2On 右边纵坐标
 tick.label1.set_color('red')
 tick.label2.set_color('green')

# 刻度线
for line in ax.yaxis.get_ticklines():
 # line is a Line2D instance
 line.set_color('green')
 line.set_markersize(25)
 line.set_markeredgewidth(3)

# 刻度 文字
for label in ax.xaxis.get_ticklabels():
 # label is a Text instance
 label.set_color('red')
 label.set_rotation(45)
 label.set_fontsize(16)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import mpl_toolkits.axisartist as axisartist
def setup_axes(fig, rect):
 ax = axisartist.Subplot(fig, rect)
 fig.add_subplot(ax)

 ax.set_yticks([0.2, 0.8])
 # 设置刻度标记
 ax.set_yticklabels(["short", "loooong"])
 ax.set_xticks([0.2, 0.8])
 ax.set_xticklabels([r"$\frac{1}{2}\pi$", r"$\pi$"])

 return ax


fig = plt.figure(1, figsize=(3, 5))
fig.subplots_adjust(left=0.5, hspace=0.7)

ax = setup_axes(fig, 311)
ax.set_ylabel("ha=right")
ax.set_xlabel("va=baseline")

ax = setup_axes(fig, 312)
# 刻度标签对齐方式
ax.axis["left"].major_ticklabels.set_ha("center") # 居中
ax.axis["bottom"].major_ticklabels.set_va("top") # 项部
ax.set_ylabel("ha=center")
ax.set_xlabel("va=top")

ax = setup_axes(fig, 313)
ax.axis["left"].major_ticklabels.set_ha("left")  # 左边
ax.axis["bottom"].major_ticklabels.set_va("bottom") # 底部
ax.set_ylabel("ha=left")
ax.set_xlabel("va=bottom")

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

共享坐标轴

# 共享坐标轴 方法一
t = np.arange(0.01, 5.0, 0.01)
s1 = np.sin(2 * np.pi * t)
s2 = np.exp(-t)
s3 = np.sin(4 * np.pi * t)

plt.subplots_adjust(top=2) #位置调整

ax1 = plt.subplot(311)
plt.plot(t, s1)
plt.setp(ax1.get_xticklabels(), fontsize=6)
plt.title('我是原坐标')


# 只共享X轴 sharex
ax2 = plt.subplot(312, sharex=ax1)
plt.plot(t, s2)
# make these tick labels invisible
plt.setp(ax2.get_xticklabels(), visible=False)
plt.title('我共享了X轴')


# 共享X轴和Y轴 sharex、sharey
ax3 = plt.subplot(313, sharex=ax1, sharey=ax1)
plt.plot(t, s3)
plt.xlim(0.01, 5.0) #不起作用
plt.title('我共享了X轴和Y轴')
plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

# 共享坐标轴 方法二
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)

f, axarr = plt.subplots(2, sharex=True)
f.suptitle('共享X轴')
axarr[0].plot(x, y)
axarr[1].scatter(x, y, color='r')

f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
f.suptitle('共享Y轴')
ax1.plot(x, y)
ax2.scatter(x, y)

f, axarr = plt.subplots(3, sharex=True, sharey=True)
f.suptitle('同时共享X轴和Y轴')
axarr[0].plot(x, y)
axarr[1].scatter(x, y)
axarr[2].scatter(x, 2 * y ** 2 - 1, color='g')
# 间距调整为0
f.subplots_adjust(hspace=0)
# 设置全部标签在外部
for ax in axarr:
 ax.label_outer()

Python绘图Matplotlib之坐标轴及刻度总结

Python绘图Matplotlib之坐标轴及刻度总结

Python绘图Matplotlib之坐标轴及刻度总结

放大缩小

def f(t):
 return np.exp(-t) * np.cos(2*np.pi*t)


t1 = np.arange(0.0, 3.0, 0.01)

ax1 = plt.subplot(212)
ax1.margins(0.05)   # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1), 'k')

ax2 = plt.subplot(221)
ax2.margins(2, 2)   # Values >0.0 zoom out
ax2.plot(t1, f(t1), 'r')
ax2.set_title('Zoomed out')

ax3 = plt.subplot(222)
ax3.margins(x=0, y=-0.25) # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1), 'g')
ax3.set_title('Zoomed in')

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

from matplotlib.transforms import Bbox, TransformedBbox, \
 blended_transform_factory

from mpl_toolkits.axes_grid1.inset_locator import BboxPatch, BboxConnector,\
 BboxConnectorPatch


def connect_bbox(bbox1, bbox2,
     loc1a, loc2a, loc1b, loc2b,
     prop_lines, prop_patches=None):
 if prop_patches is None:
  prop_patches = prop_lines.copy()
  prop_patches["alpha"] = prop_patches.get("alpha", 1) * 0.2

 c1 = BboxConnector(bbox1, bbox2, loc1=loc1a, loc2=loc2a, **prop_lines)
 c1.set_clip_on(False)
 c2 = BboxConnector(bbox1, bbox2, loc1=loc1b, loc2=loc2b, **prop_lines)
 c2.set_clip_on(False)

 bbox_patch1 = BboxPatch(bbox1, **prop_patches)
 bbox_patch2 = BboxPatch(bbox2, **prop_patches)

 p = BboxConnectorPatch(bbox1, bbox2,
       # loc1a=3, loc2a=2, loc1b=4, loc2b=1,
       loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b,
       **prop_patches)
 p.set_clip_on(False)

 return c1, c2, bbox_patch1, bbox_patch2, p


def zoom_effect01(ax1, ax2, xmin, xmax, **kwargs):
 """
 ax1 : the main axes
 ax1 : the zoomed axes
 (xmin,xmax) : the limits of the colored area in both plot axes.

 connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will
 be marked. The keywords parameters will be used ti create
 patches.

 """

 trans1 = blended_transform_factory(ax1.transData, ax1.transAxes)
 trans2 = blended_transform_factory(ax2.transData, ax2.transAxes)

 bbox = Bbox.from_extents(xmin, 0, xmax, 1)

 mybbox1 = TransformedBbox(bbox, trans1)
 mybbox2 = TransformedBbox(bbox, trans2)

 prop_patches = kwargs.copy()
 prop_patches["ec"] = "none"
 prop_patches["alpha"] = 0.2

 c1, c2, bbox_patch1, bbox_patch2, p = \
  connect_bbox(mybbox1, mybbox2,
      loc1a=3, loc2a=2, loc1b=4, loc2b=1,
      prop_lines=kwargs, prop_patches=prop_patches)

 ax1.add_patch(bbox_patch1)
 ax2.add_patch(bbox_patch2)
 ax2.add_patch(c1)
 ax2.add_patch(c2)
 ax2.add_patch(p)

 return c1, c2, bbox_patch1, bbox_patch2, p


def zoom_effect02(ax1, ax2, **kwargs):
 """
 ax1 : the main axes
 ax1 : the zoomed axes

 Similar to zoom_effect01. The xmin & xmax will be taken from the
 ax1.viewLim.
 """

 tt = ax1.transScale + (ax1.transLimits + ax2.transAxes)
 trans = blended_transform_factory(ax2.transData, tt)

 mybbox1 = ax1.bbox
 mybbox2 = TransformedBbox(ax1.viewLim, trans)

 prop_patches = kwargs.copy()
 prop_patches["ec"] = "none"
 prop_patches["alpha"] = 0.2

 c1, c2, bbox_patch1, bbox_patch2, p = \
  connect_bbox(mybbox1, mybbox2,
      loc1a=3, loc2a=2, loc1b=4, loc2b=1,
      prop_lines=kwargs, prop_patches=prop_patches)

 ax1.add_patch(bbox_patch1)
 ax2.add_patch(bbox_patch2)
 ax2.add_patch(c1)
 ax2.add_patch(c2)
 ax2.add_patch(p)

 return c1, c2, bbox_patch1, bbox_patch2, p


import matplotlib.pyplot as plt

plt.figure(1, figsize=(5, 5))
ax1 = plt.subplot(221)
ax2 = plt.subplot(212)
ax2.set_xlim(0, 1)
ax2.set_xlim(0, 5)
zoom_effect01(ax1, ax2, 0.2, 0.8)


ax1 = plt.subplot(222)
ax1.set_xlim(2, 3)
ax2.set_xlim(0, 5)
zoom_effect02(ax1, ax2)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

嵌入式标轴轴

# 相同随机数
np.random.seed(19680801)


# create some data to use for the plot
dt = 0.001
t = np.arange(0.0, 10.0, dt)
r = np.exp(-t[:1000] / 0.05) # impulse response
x = np.random.randn(len(t))
s = np.convolve(x, r)[:len(x)] * dt # colored noise

# the main axes is subplot(111) by default
plt.plot(t, s)
#坐标轴
plt.axis([0, 1, 1.1 * np.min(s), 2 * np.max(s)])
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Gaussian colored noise')

# this is an inset axes over the main axes
a = plt.axes([.65, .6, .2, .2], facecolor='k')
n, bins, patches = plt.hist(s, 400, density=True, orientation='horizontal')
plt.title('Probability')
plt.xticks([])
plt.yticks([])

# # this is another inset axes over the main axes
a = plt.axes([0.2, 0.6, .2, .2], facecolor='k')
plt.plot(t[:len(r)], r)
plt.title('Impulse response')
plt.xlim(0, 0.2)
plt.xticks([])
plt.yticks([])

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

非常规坐标轴

# 30 points between [0, 0.2) originally made using np.random.rand(30)*.2
pts = np.array([
 0.015, 0.166, 0.133, 0.159, 0.041, 0.024, 0.195, 0.039, 0.161, 0.018,
 0.143, 0.056, 0.125, 0.096, 0.094, 0.051, 0.043, 0.021, 0.138, 0.075,
 0.109, 0.195, 0.050, 0.074, 0.079, 0.155, 0.020, 0.010, 0.061, 0.008])

# Now let's make two outlier points which are far away from everything.
pts[[3, 14]] += .8

# If we were to simply plot pts, we'd lose most of the interesting
# details due to the outliers. So let's 'break' or 'cut-out' the y-axis
# into two portions - use the top (ax) for the outliers, and the bottom
# (ax2) for the details of the majority of our data
f, (ax, ax2) = plt.subplots(2, 1, sharex=True)

# plot the same data on both axes
ax.plot(pts)
ax2.plot(pts)

# zoom-in / limit the view to different portions of the data
ax.set_ylim(.78, 1.) # outliers only
ax2.set_ylim(0, .22) # most of the data

# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop=False) # don't put tick labels at the top
ax2.xaxis.tick_bottom()

# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.

d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs)  # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal

kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal

# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

from matplotlib.transforms import Affine2D
import mpl_toolkits.axisartist.floating_axes as floating_axes
import numpy as np
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from mpl_toolkits.axisartist.grid_finder import (FixedLocator, MaxNLocator,
             DictFormatter)
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)


def setup_axes1(fig, rect):
 """
 A simple one.
 """
 tr = Affine2D().scale(2, 1).rotate_deg(30)

 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(-0.5, 3.5, 0, 4))

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 aux_ax = ax1.get_aux_axes(tr)

 grid_helper.grid_finder.grid_locator1._nbins = 4
 grid_helper.grid_finder.grid_locator2._nbins = 4

 return ax1, aux_ax


def setup_axes2(fig, rect):
 """
 With custom locator and formatter.
 Note that the extreme values are swapped.
 """
 tr = PolarAxes.PolarTransform()

 pi = np.pi
 angle_ticks = [(0, r"$0$"),
     (.25*pi, r"$\frac{1}{4}\pi$"),
     (.5*pi, r"$\frac{1}{2}\pi$")]
 grid_locator1 = FixedLocator([v for v, s in angle_ticks])
 tick_formatter1 = DictFormatter(dict(angle_ticks))

 grid_locator2 = MaxNLocator(2)

 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(.5*pi, 0, 2, 1),
  grid_locator1=grid_locator1,
  grid_locator2=grid_locator2,
  tick_formatter1=tick_formatter1,
  tick_formatter2=None)

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 # create a parasite axes whose transData in RA, cz
 aux_ax = ax1.get_aux_axes(tr)

 aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
 ax1.patch.zorder = 0.9 # but this has a side effect that the patch is
 # drawn twice, and possibly over some other
 # artists. So, we decrease the zorder a bit to
 # prevent this.

 return ax1, aux_ax


def setup_axes3(fig, rect):
 """
 Sometimes, things like axis_direction need to be adjusted.
 """

 # rotate a bit for better orientation
 tr_rotate = Affine2D().translate(-95, 0)

 # scale degree to radians
 tr_scale = Affine2D().scale(np.pi/180., 1.)

 tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()

 grid_locator1 = angle_helper.LocatorHMS(4)
 tick_formatter1 = angle_helper.FormatterHMS()

 grid_locator2 = MaxNLocator(3)

 # Specify theta limits in degrees
 ra0, ra1 = 8.*15, 14.*15
 # Specify radial limits
 cz0, cz1 = 0, 14000
 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(ra0, ra1, cz0, cz1),
  grid_locator1=grid_locator1,
  grid_locator2=grid_locator2,
  tick_formatter1=tick_formatter1,
  tick_formatter2=None)

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 # adjust axis
 ax1.axis["left"].set_axis_direction("bottom")
 ax1.axis["right"].set_axis_direction("top")

 ax1.axis["bottom"].set_visible(False)
 ax1.axis["top"].set_axis_direction("bottom")
 ax1.axis["top"].toggle(ticklabels=True, label=True)
 ax1.axis["top"].major_ticklabels.set_axis_direction("top")
 ax1.axis["top"].label.set_axis_direction("top")

 ax1.axis["left"].label.set_text(r"cz [km$^{-1}$]")
 ax1.axis["top"].label.set_text(r"$\alpha_{1950}$")

 # create a parasite axes whose transData in RA, cz
 aux_ax = ax1.get_aux_axes(tr)

 aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
 ax1.patch.zorder = 0.9 # but this has a side effect that the patch is
 # drawn twice, and possibly over some other
 # artists. So, we decrease the zorder a bit to
 # prevent this.

 return ax1, aux_ax


fig = plt.figure(1, figsize=(8, 4))
fig.subplots_adjust(wspace=0.3, left=0.05, right=0.95)

ax1, aux_ax1 = setup_axes1(fig, 131)
aux_ax1.bar([0, 1, 2, 3], [3, 2, 1, 3])

ax2, aux_ax2 = setup_axes2(fig, 132)
theta = np.random.rand(10)*.5*np.pi
radius = np.random.rand(10) + 1.
aux_ax2.scatter(theta, radius)

ax3, aux_ax3 = setup_axes3(fig, 133)

theta = (8 + np.random.rand(10)*(14 - 8))*15. # in degrees
radius = np.random.rand(10)*14000.
aux_ax3.scatter(theta, radius)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axisartist import GridHelperCurveLinear


def curvelinear_test2(fig):
 """Polar projection, but in a rectangular box.
 """
 # see demo_curvelinear_grid.py for details
 tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

 extreme_finder = angle_helper.ExtremeFinderCycle(20,
              20,
              lon_cycle=360,
              lat_cycle=None,
              lon_minmax=None,
              lat_minmax=(0,
                 np.inf),
              )

 grid_locator1 = angle_helper.LocatorDMS(12)

 tick_formatter1 = angle_helper.FormatterDMS()

 grid_helper = GridHelperCurveLinear(tr,
          extreme_finder=extreme_finder,
          grid_locator1=grid_locator1,
          tick_formatter1=tick_formatter1
          )

 ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

 fig.add_subplot(ax1)

 # Now creates floating axis

 # floating axis whose first coordinate (theta) is fixed at 60
 ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
 axis.label.set_text(r"$\theta = 60^{\circ}$")
 axis.label.set_visible(True)

 # floating axis whose second coordinate (r) is fixed at 6
 ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
 axis.label.set_text(r"$r = 6$")

 ax1.set_aspect(1.)
 ax1.set_xlim(-5, 12)
 ax1.set_ylim(-5, 10)

 ax1.grid(True)

fig = plt.figure(1, figsize=(5, 5))
fig.clf()

curvelinear_test2(fig)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python装饰器在Django框架下去除冗余代码的教程
Apr 16 Python
Python正则表达式如何进行字符串替换实例
Dec 28 Python
正确理解python中的关键字“with”与上下文管理器
Apr 21 Python
TensorFlow实现简单卷积神经网络
May 24 Python
对python同一个文件夹里面不同.py文件的交叉引用方法详解
Dec 15 Python
selenium处理元素定位点击无效问题
Jun 12 Python
在PYQT5中QscrollArea(滚动条)的使用方法
Jun 14 Python
Python实现计算对象的内存大小示例
Jul 10 Python
python代码实现逻辑回归logistic原理
Aug 07 Python
Python OrderedDict字典排序方法详解
May 21 Python
python 对xml解析的示例
Feb 27 Python
Django migrate报错的解决方案
May 20 Python
python启动应用程序和终止应用程序的方法
Jun 28 #Python
简单了解python高阶函数map/reduce
Jun 28 #Python
安装好Pycharm后如何配置Python解释器简易教程
Jun 28 #Python
关于 Python opencv 使用中的 ValueError: too many values to unpack
Jun 28 #Python
python识别图像并提取文字的实现方法
Jun 28 #Python
python3射线法判断点是否在多边形内
Jun 28 #Python
python opencv 批量改变图片的尺寸大小的方法
Jun 28 #Python
You might like
使用 MySQL Date/Time 类型
2008/03/26 PHP
php出现内存位置访问无效错误问题解决方法
2014/08/16 PHP
ThinkPHP中redirect用法分析
2014/12/05 PHP
PHP版单点登陆实现方案的实例
2016/11/17 PHP
Yii2.0框架behaviors方法使用实例分析
2019/09/30 PHP
jQuery版Tab标签切换
2011/03/16 Javascript
Nodejs极简入门教程(二):定时器
2014/10/25 NodeJs
微信JSSDK上传图片
2015/08/23 Javascript
整理Javascript基础入门学习笔记
2015/11/29 Javascript
wap手机端解决返回上一页的js实例
2016/12/08 Javascript
vue-hook-form使用详解
2017/04/07 Javascript
微信小程序 es6-promise.js封装请求与处理异步进程
2017/06/12 Javascript
基于javascript中的typeof和类型判断(详解)
2017/10/27 Javascript
Javascript实现运算符重载详解
2018/04/07 Javascript
解决vue select当前value没有更新到vue对象属性的问题
2018/08/30 Javascript
微信小程序定义和调用全局变量globalData的实现
2019/11/01 Javascript
JS 创建对象的模式实例小结
2020/04/28 Javascript
如何检测JavaScript中的死循环示例详解
2020/08/30 Javascript
python命令行参数解析OptionParser类用法实例
2014/10/09 Python
Python实现句子翻译功能
2017/11/14 Python
浅谈Python用QQ邮箱发送邮件时授权码的问题
2018/01/29 Python
Python绘制的二项分布概率图示例
2018/08/22 Python
Python3.4学习笔记之列表、数组操作示例
2019/03/01 Python
对Python3中列表乘以某一个数的示例详解
2019/07/20 Python
python 命令行传入参数实现解析
2019/08/30 Python
python函数装饰器之带参数的函数和带参数的装饰器用法示例
2019/11/06 Python
python通过matplotlib生成复合饼图
2020/02/06 Python
使用jquery实现HTML5响应式导航菜单教程
2014/04/02 HTML / CSS
采用专利算法搜索最廉价的机票:CheapAir
2016/09/10 全球购物
杭州联环马网络笔试题面试题
2013/08/04 面试题
系统管理员的职责包括那些?管理的对象是什么?
2016/09/20 面试题
公务员职业生涯规划书范文  
2014/01/19 职场文书
创业计划书模版
2014/02/05 职场文书
个人事迹材料怎么写
2014/12/30 职场文书
试用期工作表现自我评价
2015/03/06 职场文书
借条如何写
2015/05/26 职场文书