Python绘图Matplotlib之坐标轴及刻度总结


Posted in Python onJune 28, 2019

学习https://matplotlib.org/gallery/index.html 记录,描述不一定准确,具体请参考官网

Matplotlib使用总结图

Python绘图Matplotlib之坐标轴及刻度总结

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

import pandas as pd
import numpy as np

新建隐藏坐标轴

from mpl_toolkits.axisartist.axislines import SubplotZero
import numpy as np

fig = plt.figure(1, (10, 6))

ax = SubplotZero(fig, 1, 1, 1)
fig.add_subplot(ax)

"""新建坐标轴"""
ax.axis["xzero"].set_visible(True)
ax.axis["xzero"].label.set_text("新建y=0坐标")
ax.axis["xzero"].label.set_color('green')
# ax.axis['yzero'].set_visible(True)
# ax.axis["yzero"].label.set_text("新建x=0坐标")

# 新建一条y=2横坐标轴
ax.axis["新建1"] = ax.new_floating_axis(nth_coord=0, value=2,axis_direction="bottom")
ax.axis["新建1"].toggle(all=True)
ax.axis["新建1"].label.set_text("y = 2横坐标")
ax.axis["新建1"].label.set_color('blue')

"""坐标箭头"""
ax.axis["xzero"].set_axisline_style("-|>")

"""隐藏坐标轴"""
# 方法一:隐藏上边及右边
# ax.axis["right"].set_visible(False)
# ax.axis["top"].set_visible(False)
#方法二:可以一起写
ax.axis["top",'right'].set_visible(False)
# 方法三:利用 for in
# for n in ["bottom", "top", "right"]:
#  ax.axis[n].set_visible(False)

"""设置刻度"""
ax.set_ylim(-3, 3)
ax.set_yticks([-1,-0.5,0,0.5,1])
ax.set_xlim([-5, 8])
# ax.set_xticks([-5,5,1])

#设置网格样式
ax.grid(True, linestyle='-.')


xx = np.arange(-4, 2*np.pi, 0.01)
ax.plot(xx, np.sin(xx))


# 于 offset 处新建一条纵坐标
offset = (40, 0)
new_axisline = ax.get_grid_helper().new_fixed_axis
ax.axis["新建2"] = new_axisline(loc="right", offset=offset, axes=ax)
ax.axis["新建2"].label.set_text("新建纵坐标")
ax.axis["新建2"].label.set_color('red')


plt.show()
# 存为图像
# fig.savefig('test.png')

Python绘图Matplotlib之坐标轴及刻度总结

from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
import matplotlib.pyplot as plt

host = host_subplot(111, axes_class=AA.Axes)
plt.subplots_adjust(right=0.75)

par1 = host.twinx()
par2 = host.twinx()

offset = 100
new_fixed_axis = par2.get_grid_helper().new_fixed_axis
par2.axis["right"] = new_fixed_axis(loc="right",
         axes=par2,
         offset=(offset, 0))

par1.axis["right"].toggle(all=True)
par2.axis["right"].toggle(all=True)

host.set_xlim(0, 2)
host.set_ylim(0, 2)

host.set_xlabel("Distance")
host.set_ylabel("Density")
par1.set_ylabel("Temperature")
par2.set_ylabel("Velocity")

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")

par1.set_ylim(0, 4)
par2.set_ylim(1, 65)

host.legend()

host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
par2.axis["right"].label.set_color(p3.get_color())

plt.draw()
plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

# 第二坐标
fig, ax_f = plt.subplots()
# 这步是关键
ax_c = ax_f.twinx()
ax_d = ax_f.twiny()

# automatically update ylim of ax2 when ylim of ax1 changes.
# ax_f.callbacks.connect("ylim_changed", convert_ax_c_to_celsius)
ax_f.plot(np.linspace(-40, 120, 100))
ax_f.set_xlim(0, 100)

# ax_f.set_title('第二坐标', size=14)
ax_f.set_ylabel('Y轴',color='r')
ax_f.set_xlabel('X轴',color='c')

ax_c.set_ylabel('第二Y轴', color='b')
ax_c.set_yticklabels(["$0$", r"$\frac{1}{2}\pi$", r"$\pi$", r"$\frac{3}{2}\pi$", r"$2\pi$"])
# ax_c.set_ylim(1,5)

ax_d.set_xlabel('第二X轴', color='g')
ax_d.set_xlim(-1,1)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

刻度及标记

import mpl_toolkits.axisartist.axislines as axislines


fig = plt.figure(1, figsize=(10, 6))
fig.subplots_adjust(bottom=0.2)

# 子图1
ax1 = axislines.Subplot(fig, 131)
fig.add_subplot(ax1)
# for axis in ax.axis.values():
#  axis.major_ticks.set_tick_out(True) # 标签全部在外部
ax1.axis[:].major_ticks.set_tick_out(True) # 这句和上面的for循环功能相同
ax1.axis["left"].label.set_text("子图1 left标签") # 显示在左边
# 设置刻度
ax1.set_yticks([2,4,6,8])
ax1.set_xticks([0.2,0.4,0.6,0.8])

# 子图2
ax2 = axislines.Subplot(fig, 132)
fig.add_subplot(ax2)
ax2.set_yticks([1,3,5,7])
ax2.set_yticklabels(('one','two','three', 'four', 'five')) # 不显示‘five'
ax2.set_xlim(5, 0) # X轴刻度
ax2.axis["left"].set_axis_direction("right")
ax2.axis["left"].label.set_text("子图2 left标签") # 显示在右边
ax2.axis["bottom"].set_axis_direction("top")
ax2.axis["right"].set_axis_direction("left")
ax2.axis["top"].set_axis_direction("bottom")

# 子图3
ax3 = axislines.Subplot(fig, 133)
fig.add_subplot(ax3)
# 前两位表示X轴范围,后两位表示Y轴范围
ax3.axis([40, 160, 0, 0.03])
ax3.axis["left"].set_axis_direction("right")
ax3.axis[:].major_ticks.set_tick_out(True)

ax3.axis["left"].label.set_text("Long Label Left")
ax3.axis["bottom"].label.set_text("Label Bottom")
ax3.axis["right"].label.set_text("Long Label Right")
ax3.axis["right"].label.set_visible(True)
ax3.axis["left"].label.set_pad(0)
ax3.axis["bottom"].label.set_pad(20)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import matplotlib.ticker as ticker

# Fixing random state for reproducibility
np.random.seed(19680801)

fig, ax = plt.subplots()
ax.plot(100*np.random.rand(20))

# 设置 y坐标轴刻度
formatter = ticker.FormatStrFormatter('$%1.2f')
ax.yaxis.set_major_formatter(formatter)

# 刻度
for tick in ax.yaxis.get_major_ticks():
 tick.label1On = True # label1On 左边纵坐标
 tick.label2On = True # label2On 右边纵坐标
 tick.label1.set_color('red')
 tick.label2.set_color('green')

# 刻度线
for line in ax.yaxis.get_ticklines():
 # line is a Line2D instance
 line.set_color('green')
 line.set_markersize(25)
 line.set_markeredgewidth(3)

# 刻度 文字
for label in ax.xaxis.get_ticklabels():
 # label is a Text instance
 label.set_color('red')
 label.set_rotation(45)
 label.set_fontsize(16)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import mpl_toolkits.axisartist as axisartist
def setup_axes(fig, rect):
 ax = axisartist.Subplot(fig, rect)
 fig.add_subplot(ax)

 ax.set_yticks([0.2, 0.8])
 # 设置刻度标记
 ax.set_yticklabels(["short", "loooong"])
 ax.set_xticks([0.2, 0.8])
 ax.set_xticklabels([r"$\frac{1}{2}\pi$", r"$\pi$"])

 return ax


fig = plt.figure(1, figsize=(3, 5))
fig.subplots_adjust(left=0.5, hspace=0.7)

ax = setup_axes(fig, 311)
ax.set_ylabel("ha=right")
ax.set_xlabel("va=baseline")

ax = setup_axes(fig, 312)
# 刻度标签对齐方式
ax.axis["left"].major_ticklabels.set_ha("center") # 居中
ax.axis["bottom"].major_ticklabels.set_va("top") # 项部
ax.set_ylabel("ha=center")
ax.set_xlabel("va=top")

ax = setup_axes(fig, 313)
ax.axis["left"].major_ticklabels.set_ha("left")  # 左边
ax.axis["bottom"].major_ticklabels.set_va("bottom") # 底部
ax.set_ylabel("ha=left")
ax.set_xlabel("va=bottom")

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

共享坐标轴

# 共享坐标轴 方法一
t = np.arange(0.01, 5.0, 0.01)
s1 = np.sin(2 * np.pi * t)
s2 = np.exp(-t)
s3 = np.sin(4 * np.pi * t)

plt.subplots_adjust(top=2) #位置调整

ax1 = plt.subplot(311)
plt.plot(t, s1)
plt.setp(ax1.get_xticklabels(), fontsize=6)
plt.title('我是原坐标')


# 只共享X轴 sharex
ax2 = plt.subplot(312, sharex=ax1)
plt.plot(t, s2)
# make these tick labels invisible
plt.setp(ax2.get_xticklabels(), visible=False)
plt.title('我共享了X轴')


# 共享X轴和Y轴 sharex、sharey
ax3 = plt.subplot(313, sharex=ax1, sharey=ax1)
plt.plot(t, s3)
plt.xlim(0.01, 5.0) #不起作用
plt.title('我共享了X轴和Y轴')
plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

# 共享坐标轴 方法二
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)

f, axarr = plt.subplots(2, sharex=True)
f.suptitle('共享X轴')
axarr[0].plot(x, y)
axarr[1].scatter(x, y, color='r')

f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
f.suptitle('共享Y轴')
ax1.plot(x, y)
ax2.scatter(x, y)

f, axarr = plt.subplots(3, sharex=True, sharey=True)
f.suptitle('同时共享X轴和Y轴')
axarr[0].plot(x, y)
axarr[1].scatter(x, y)
axarr[2].scatter(x, 2 * y ** 2 - 1, color='g')
# 间距调整为0
f.subplots_adjust(hspace=0)
# 设置全部标签在外部
for ax in axarr:
 ax.label_outer()

Python绘图Matplotlib之坐标轴及刻度总结

Python绘图Matplotlib之坐标轴及刻度总结

Python绘图Matplotlib之坐标轴及刻度总结

放大缩小

def f(t):
 return np.exp(-t) * np.cos(2*np.pi*t)


t1 = np.arange(0.0, 3.0, 0.01)

ax1 = plt.subplot(212)
ax1.margins(0.05)   # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1), 'k')

ax2 = plt.subplot(221)
ax2.margins(2, 2)   # Values >0.0 zoom out
ax2.plot(t1, f(t1), 'r')
ax2.set_title('Zoomed out')

ax3 = plt.subplot(222)
ax3.margins(x=0, y=-0.25) # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1), 'g')
ax3.set_title('Zoomed in')

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

from matplotlib.transforms import Bbox, TransformedBbox, \
 blended_transform_factory

from mpl_toolkits.axes_grid1.inset_locator import BboxPatch, BboxConnector,\
 BboxConnectorPatch


def connect_bbox(bbox1, bbox2,
     loc1a, loc2a, loc1b, loc2b,
     prop_lines, prop_patches=None):
 if prop_patches is None:
  prop_patches = prop_lines.copy()
  prop_patches["alpha"] = prop_patches.get("alpha", 1) * 0.2

 c1 = BboxConnector(bbox1, bbox2, loc1=loc1a, loc2=loc2a, **prop_lines)
 c1.set_clip_on(False)
 c2 = BboxConnector(bbox1, bbox2, loc1=loc1b, loc2=loc2b, **prop_lines)
 c2.set_clip_on(False)

 bbox_patch1 = BboxPatch(bbox1, **prop_patches)
 bbox_patch2 = BboxPatch(bbox2, **prop_patches)

 p = BboxConnectorPatch(bbox1, bbox2,
       # loc1a=3, loc2a=2, loc1b=4, loc2b=1,
       loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b,
       **prop_patches)
 p.set_clip_on(False)

 return c1, c2, bbox_patch1, bbox_patch2, p


def zoom_effect01(ax1, ax2, xmin, xmax, **kwargs):
 """
 ax1 : the main axes
 ax1 : the zoomed axes
 (xmin,xmax) : the limits of the colored area in both plot axes.

 connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will
 be marked. The keywords parameters will be used ti create
 patches.

 """

 trans1 = blended_transform_factory(ax1.transData, ax1.transAxes)
 trans2 = blended_transform_factory(ax2.transData, ax2.transAxes)

 bbox = Bbox.from_extents(xmin, 0, xmax, 1)

 mybbox1 = TransformedBbox(bbox, trans1)
 mybbox2 = TransformedBbox(bbox, trans2)

 prop_patches = kwargs.copy()
 prop_patches["ec"] = "none"
 prop_patches["alpha"] = 0.2

 c1, c2, bbox_patch1, bbox_patch2, p = \
  connect_bbox(mybbox1, mybbox2,
      loc1a=3, loc2a=2, loc1b=4, loc2b=1,
      prop_lines=kwargs, prop_patches=prop_patches)

 ax1.add_patch(bbox_patch1)
 ax2.add_patch(bbox_patch2)
 ax2.add_patch(c1)
 ax2.add_patch(c2)
 ax2.add_patch(p)

 return c1, c2, bbox_patch1, bbox_patch2, p


def zoom_effect02(ax1, ax2, **kwargs):
 """
 ax1 : the main axes
 ax1 : the zoomed axes

 Similar to zoom_effect01. The xmin & xmax will be taken from the
 ax1.viewLim.
 """

 tt = ax1.transScale + (ax1.transLimits + ax2.transAxes)
 trans = blended_transform_factory(ax2.transData, tt)

 mybbox1 = ax1.bbox
 mybbox2 = TransformedBbox(ax1.viewLim, trans)

 prop_patches = kwargs.copy()
 prop_patches["ec"] = "none"
 prop_patches["alpha"] = 0.2

 c1, c2, bbox_patch1, bbox_patch2, p = \
  connect_bbox(mybbox1, mybbox2,
      loc1a=3, loc2a=2, loc1b=4, loc2b=1,
      prop_lines=kwargs, prop_patches=prop_patches)

 ax1.add_patch(bbox_patch1)
 ax2.add_patch(bbox_patch2)
 ax2.add_patch(c1)
 ax2.add_patch(c2)
 ax2.add_patch(p)

 return c1, c2, bbox_patch1, bbox_patch2, p


import matplotlib.pyplot as plt

plt.figure(1, figsize=(5, 5))
ax1 = plt.subplot(221)
ax2 = plt.subplot(212)
ax2.set_xlim(0, 1)
ax2.set_xlim(0, 5)
zoom_effect01(ax1, ax2, 0.2, 0.8)


ax1 = plt.subplot(222)
ax1.set_xlim(2, 3)
ax2.set_xlim(0, 5)
zoom_effect02(ax1, ax2)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

嵌入式标轴轴

# 相同随机数
np.random.seed(19680801)


# create some data to use for the plot
dt = 0.001
t = np.arange(0.0, 10.0, dt)
r = np.exp(-t[:1000] / 0.05) # impulse response
x = np.random.randn(len(t))
s = np.convolve(x, r)[:len(x)] * dt # colored noise

# the main axes is subplot(111) by default
plt.plot(t, s)
#坐标轴
plt.axis([0, 1, 1.1 * np.min(s), 2 * np.max(s)])
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Gaussian colored noise')

# this is an inset axes over the main axes
a = plt.axes([.65, .6, .2, .2], facecolor='k')
n, bins, patches = plt.hist(s, 400, density=True, orientation='horizontal')
plt.title('Probability')
plt.xticks([])
plt.yticks([])

# # this is another inset axes over the main axes
a = plt.axes([0.2, 0.6, .2, .2], facecolor='k')
plt.plot(t[:len(r)], r)
plt.title('Impulse response')
plt.xlim(0, 0.2)
plt.xticks([])
plt.yticks([])

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

非常规坐标轴

# 30 points between [0, 0.2) originally made using np.random.rand(30)*.2
pts = np.array([
 0.015, 0.166, 0.133, 0.159, 0.041, 0.024, 0.195, 0.039, 0.161, 0.018,
 0.143, 0.056, 0.125, 0.096, 0.094, 0.051, 0.043, 0.021, 0.138, 0.075,
 0.109, 0.195, 0.050, 0.074, 0.079, 0.155, 0.020, 0.010, 0.061, 0.008])

# Now let's make two outlier points which are far away from everything.
pts[[3, 14]] += .8

# If we were to simply plot pts, we'd lose most of the interesting
# details due to the outliers. So let's 'break' or 'cut-out' the y-axis
# into two portions - use the top (ax) for the outliers, and the bottom
# (ax2) for the details of the majority of our data
f, (ax, ax2) = plt.subplots(2, 1, sharex=True)

# plot the same data on both axes
ax.plot(pts)
ax2.plot(pts)

# zoom-in / limit the view to different portions of the data
ax.set_ylim(.78, 1.) # outliers only
ax2.set_ylim(0, .22) # most of the data

# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop=False) # don't put tick labels at the top
ax2.xaxis.tick_bottom()

# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.

d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs)  # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal

kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal

# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

from matplotlib.transforms import Affine2D
import mpl_toolkits.axisartist.floating_axes as floating_axes
import numpy as np
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from mpl_toolkits.axisartist.grid_finder import (FixedLocator, MaxNLocator,
             DictFormatter)
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)


def setup_axes1(fig, rect):
 """
 A simple one.
 """
 tr = Affine2D().scale(2, 1).rotate_deg(30)

 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(-0.5, 3.5, 0, 4))

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 aux_ax = ax1.get_aux_axes(tr)

 grid_helper.grid_finder.grid_locator1._nbins = 4
 grid_helper.grid_finder.grid_locator2._nbins = 4

 return ax1, aux_ax


def setup_axes2(fig, rect):
 """
 With custom locator and formatter.
 Note that the extreme values are swapped.
 """
 tr = PolarAxes.PolarTransform()

 pi = np.pi
 angle_ticks = [(0, r"$0$"),
     (.25*pi, r"$\frac{1}{4}\pi$"),
     (.5*pi, r"$\frac{1}{2}\pi$")]
 grid_locator1 = FixedLocator([v for v, s in angle_ticks])
 tick_formatter1 = DictFormatter(dict(angle_ticks))

 grid_locator2 = MaxNLocator(2)

 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(.5*pi, 0, 2, 1),
  grid_locator1=grid_locator1,
  grid_locator2=grid_locator2,
  tick_formatter1=tick_formatter1,
  tick_formatter2=None)

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 # create a parasite axes whose transData in RA, cz
 aux_ax = ax1.get_aux_axes(tr)

 aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
 ax1.patch.zorder = 0.9 # but this has a side effect that the patch is
 # drawn twice, and possibly over some other
 # artists. So, we decrease the zorder a bit to
 # prevent this.

 return ax1, aux_ax


def setup_axes3(fig, rect):
 """
 Sometimes, things like axis_direction need to be adjusted.
 """

 # rotate a bit for better orientation
 tr_rotate = Affine2D().translate(-95, 0)

 # scale degree to radians
 tr_scale = Affine2D().scale(np.pi/180., 1.)

 tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()

 grid_locator1 = angle_helper.LocatorHMS(4)
 tick_formatter1 = angle_helper.FormatterHMS()

 grid_locator2 = MaxNLocator(3)

 # Specify theta limits in degrees
 ra0, ra1 = 8.*15, 14.*15
 # Specify radial limits
 cz0, cz1 = 0, 14000
 grid_helper = floating_axes.GridHelperCurveLinear(
  tr, extremes=(ra0, ra1, cz0, cz1),
  grid_locator1=grid_locator1,
  grid_locator2=grid_locator2,
  tick_formatter1=tick_formatter1,
  tick_formatter2=None)

 ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
 fig.add_subplot(ax1)

 # adjust axis
 ax1.axis["left"].set_axis_direction("bottom")
 ax1.axis["right"].set_axis_direction("top")

 ax1.axis["bottom"].set_visible(False)
 ax1.axis["top"].set_axis_direction("bottom")
 ax1.axis["top"].toggle(ticklabels=True, label=True)
 ax1.axis["top"].major_ticklabels.set_axis_direction("top")
 ax1.axis["top"].label.set_axis_direction("top")

 ax1.axis["left"].label.set_text(r"cz [km$^{-1}$]")
 ax1.axis["top"].label.set_text(r"$\alpha_{1950}$")

 # create a parasite axes whose transData in RA, cz
 aux_ax = ax1.get_aux_axes(tr)

 aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
 ax1.patch.zorder = 0.9 # but this has a side effect that the patch is
 # drawn twice, and possibly over some other
 # artists. So, we decrease the zorder a bit to
 # prevent this.

 return ax1, aux_ax


fig = plt.figure(1, figsize=(8, 4))
fig.subplots_adjust(wspace=0.3, left=0.05, right=0.95)

ax1, aux_ax1 = setup_axes1(fig, 131)
aux_ax1.bar([0, 1, 2, 3], [3, 2, 1, 3])

ax2, aux_ax2 = setup_axes2(fig, 132)
theta = np.random.rand(10)*.5*np.pi
radius = np.random.rand(10) + 1.
aux_ax2.scatter(theta, radius)

ax3, aux_ax3 = setup_axes3(fig, 133)

theta = (8 + np.random.rand(10)*(14 - 8))*15. # in degrees
radius = np.random.rand(10)*14000.
aux_ax3.scatter(theta, radius)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axisartist import GridHelperCurveLinear


def curvelinear_test2(fig):
 """Polar projection, but in a rectangular box.
 """
 # see demo_curvelinear_grid.py for details
 tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

 extreme_finder = angle_helper.ExtremeFinderCycle(20,
              20,
              lon_cycle=360,
              lat_cycle=None,
              lon_minmax=None,
              lat_minmax=(0,
                 np.inf),
              )

 grid_locator1 = angle_helper.LocatorDMS(12)

 tick_formatter1 = angle_helper.FormatterDMS()

 grid_helper = GridHelperCurveLinear(tr,
          extreme_finder=extreme_finder,
          grid_locator1=grid_locator1,
          tick_formatter1=tick_formatter1
          )

 ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

 fig.add_subplot(ax1)

 # Now creates floating axis

 # floating axis whose first coordinate (theta) is fixed at 60
 ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
 axis.label.set_text(r"$\theta = 60^{\circ}$")
 axis.label.set_visible(True)

 # floating axis whose second coordinate (r) is fixed at 6
 ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
 axis.label.set_text(r"$r = 6$")

 ax1.set_aspect(1.)
 ax1.set_xlim(-5, 12)
 ax1.set_ylim(-5, 10)

 ax1.grid(True)

fig = plt.figure(1, figsize=(5, 5))
fig.clf()

curvelinear_test2(fig)

plt.show()

Python绘图Matplotlib之坐标轴及刻度总结

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python统计列表中的重复项出现的次数的方法
Aug 18 Python
零基础写python爬虫之打包生成exe文件
Nov 06 Python
Python中处理时间的几种方法小结
Apr 09 Python
Python闭包的两个注意事项(推荐)
Mar 20 Python
Python中的defaultdict与__missing__()使用介绍
Feb 03 Python
python按综合、销量排序抓取100页的淘宝商品列表信息
Feb 24 Python
详解使用PyInstaller将Pygame库编写的小游戏程序打包为exe文件
Aug 23 Python
python实现逆滤波与维纳滤波示例
Feb 26 Python
Python实现电视里的5毛特效实例代码详解
May 15 Python
Python单元测试及unittest框架用法实例解析
Jul 09 Python
Python 如何反方向迭代一个序列
Jul 28 Python
Python作用域和名称空间的详细介绍
Apr 13 Python
python启动应用程序和终止应用程序的方法
Jun 28 #Python
简单了解python高阶函数map/reduce
Jun 28 #Python
安装好Pycharm后如何配置Python解释器简易教程
Jun 28 #Python
关于 Python opencv 使用中的 ValueError: too many values to unpack
Jun 28 #Python
python识别图像并提取文字的实现方法
Jun 28 #Python
python3射线法判断点是否在多边形内
Jun 28 #Python
python opencv 批量改变图片的尺寸大小的方法
Jun 28 #Python
You might like
PHPMailer 中文使用说明小结
2010/01/22 PHP
smarty内置函数capture用法分析
2015/01/22 PHP
Discuz论坛密码与密保加密规则
2016/12/19 PHP
laravel框架数据库操作、查询构建器、Eloquent ORM操作实例分析
2019/12/20 PHP
比较详细的javascript对象的property和prototype是什么一种关系
2007/08/06 Javascript
测试JavaScript字符串处理性能的代码
2009/12/07 Javascript
JavaScript的事件绑定(方便不支持js的时候)
2013/10/01 Javascript
利用NodeJS和PhantomJS抓取网站页面信息以及网站截图
2013/11/18 NodeJs
javascript通过className来获取元素的简单示例代码
2014/01/10 Javascript
JavaScript实现的伸展收缩型菜单代码
2015/10/14 Javascript
javascript中eval和with用法实例总结
2015/11/30 Javascript
深入理解选择框脚本[推荐]
2016/12/13 Javascript
javascript设计模式之中介者模式学习笔记
2017/02/15 Javascript
利用node.js如何创建子进程详解
2017/12/09 Javascript
手把手带你封装一个vue component第三方库
2019/02/14 Javascript
Django+Vue实现WebSocket连接的示例代码
2019/05/28 Javascript
Python编写简单的HTML页面合并脚本
2016/07/11 Python
Python之str操作方法(详解)
2017/06/19 Python
Python随机生成均匀分布在单位圆内的点代码示例
2017/11/13 Python
Python高斯消除矩阵
2019/01/02 Python
Python中的几种矩阵乘法(小结)
2019/07/10 Python
Python 3 判断2个字典相同
2019/08/06 Python
CSS3实现大小不一的粒子旋转加载动画
2016/04/21 HTML / CSS
台湾前三大B2C购物网站:MOMO购物网
2017/04/27 全球购物
德国孕妇装和婴童服装网上商店:bellybutton
2018/04/12 全球购物
欧姆龙医疗保健与医疗产品:Omron Healthcare
2020/02/10 全球购物
英国网上超市:Ocado
2020/03/05 全球购物
YII2 全局异常处理深入讲解
2021/03/24 PHP
师范生自荐信模板
2014/05/28 职场文书
2014最新党员批评与自我批评材料
2014/09/24 职场文书
2014年社区工会工作总结
2014/12/18 职场文书
销售助理岗位职责
2015/02/11 职场文书
质量保证书格式
2015/02/27 职场文书
干部培训简讯
2015/07/20 职场文书
外出培训学习心得体会
2016/01/18 职场文书
JS前端使用canvas实现扩展物体类和事件派发
2022/08/05 Javascript