Python机器学习库scikit-learn安装与基本使用教程


Posted in Python onJune 25, 2018

本文实例讲述了Python机器学习库scikit-learn安装与基本使用。分享给大家供大家参考,具体如下:

引言

scikit-learn是Python的一个开源机器学习模块,它建立在NumPySciPymatplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单、高效地进行数据挖掘和数据分析。

scikit-learn安装

python 中安装许多模板库之前都有依赖关系,安装 scikit-learn 之前需要以下先决条件:

Python(>= 2.6 or >= 3.3)
NumPy (>= 1.6.1)
SciPy (>= 0.9)

如无意外,下面用 pip 的安装方法可以顺利完成~~

安装 numpy

sudo pip install numpy

安装 scipy

需要先安装 matplotlib ipython ipython-notebook pandas sympy

sudo apt-get install python-matplotlib ipython ipython-notebook
sudo apt-get install python-pandas python-sympy python-nose
sudo pip install scipy

安装 scikit-learn

sudo pip install -U scikit-learn

测试

在 terminal 里面输入

pip list

这个会列出 pip 安装的所有东西,如果里面有 sklearn 这一项,应该就是大功告成了!

或者尝试着将几个模板库导入进来

import numpy
import scipy
import sklearn

加载数据(Data Loading)

本文所使用的数据集为‘今日头条'近期两篇热门新闻“牛!川大学霸寝室5人获16份名校通知书”、“张超凡的最后14天:山西15岁休学少年是如何殒命网吧的”分别500条评论,共1000条评论。

去除停用词后得到了词库大小为3992的词库。因此构建了1000×3992的特征矩阵,以及长度为1000的对应评论所属类别列表

import numpy as np
feature_matrix = np.load('dataSet/feature_matrix_save.npy')
class_list = np.load('dataSet/class_result_save.npy')

数据归一化(Data Normalization)

大多数机器学习算法中的梯度方法对于数据的缩放和尺度都是很敏感的,在开始跑算法之前,我们应该进行归一化或者标准化的过程,这使得特征数据缩放到0-1范围中。scikit-learn提供了归一化的方法:

from sklearn import preprocessing
# 归一化(Normalization)
normalized_X = preprocessing.normalize(feature_matrix)
print normalized_X
# 标准化(Standardization)
standardized_X = preprocessing.scale(feature_matrix)
print standardized_X

特征选择(Feature Selection)

在解决一个实际问题的过程中,选择合适的特征或者构建特征的能力特别重要。这成为特征选择或者特征工程。

特征选择时一个很需要创造力的过程,更多的依赖于直觉和专业知识,并且有很多现成的算法来进行特征的选择。

下面的树算法(Tree algorithms)计算特征的信息量:

from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
print feature_matrix.shape # 原特征矩阵规模
feature_matrix = model.fit(feature_matrix, class_list).transform(feature_matrix)
print feature_matrix.shape # 特征选择后 特征矩阵的规模

特征提取(Feature Extraction)

用TFIDF算法来计算特征词的权重值是表示当一个词在这篇文档中出现的频率越高,同时在其他文档中出现的次数越少,则表明该词对于表示这篇文档的区分能力越强,所以其权重值就应该越大。

from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer = TfidfTransformer()
feature_matrix = tfidf_transformer.fit_transform(feature_matrix).toarray()

朴素贝叶斯(Naive Bayes)

朴素贝叶斯是一个很著名的机器学习算法,主要是根据训练样本的特征来计算各个类别的概率,在多分类问题上用的比较多。

from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
# 构建朴素贝叶斯模型
model = GaussianNB()
model.fit(feature_matrix, class_list)
print model
# 使用测试集进行测试(此处将训练集做测试集)
expected = class_list
predicted = model.predict(feature_matrix)
# 输出测试效果
print metrics.classification_report(expected, predicted)
print metrics.confusion_matrix(expected, predicted)

k近邻(k-Nearest Neighbours)

k近邻算法常常被用作是分类算法一部分,比如可以用它来评估特征,在特征选择上我们可以用到它。

from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
# 构建knn模型
model = KNeighborsClassifier()
model.fit(feature_matrix, class_list)
print model
# 使用测试集进行测试(此处将训练集做测试集)
expected = class_list
predicted = model.predict(feature_matrix)
# 输出测试效果
print metrics.classification_report(expected, predicted)
print metrics.confusion_matrix(expected, predicted)

决策树(Decision Tree)

分类与回归树(Classification and Regression Trees ,CART)算法常用于特征含有类别信息的分类或者回归问题,这种方法非常适用于多分类情况。

from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
# 构建决策数模型
model = DecisionTreeClassifier()
model.fit(feature_matrix, class_list)
print model
# 使用测试集进行测试(此处将训练集做测试集)
expected = class_list
predicted = model.predict(feature_matrix)
# 输出测试效果
print metrics.classification_report(expected, predicted)
print metrics.confusion_matrix(expected, predicted)

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python FTP操作类代码分享
May 13 Python
简化Python的Django框架代码的一些示例
Apr 20 Python
python脚本替换指定行实现步骤
Jul 11 Python
分享一个可以生成各种进制格式IP的小工具实例代码
Jul 28 Python
python 读取txt中每行数据,并且保存到excel中的实例
Apr 29 Python
手把手教你如何安装Pycharm(详细图文教程)
Nov 28 Python
Django在admin后台集成TinyMCE富文本编辑器的例子
Aug 09 Python
python3 pillow模块实现简单验证码
Oct 31 Python
python第三方库学习笔记
Feb 07 Python
Python如何绘制日历图和热力图
Aug 07 Python
Python实现PS滤镜中的USM锐化效果
Dec 04 Python
Django中的DateTimeField和DateField实现
Feb 24 Python
python3实现随机数
Jun 25 #Python
Python实现快速计算词频功能示例
Jun 25 #Python
python实现画一颗树和一片森林
Jun 25 #Python
完美解决在oj中Python的循环输入问题
Jun 25 #Python
django rest framework 数据的查找、过滤、排序的示例
Jun 25 #Python
python使用turtle库绘制树
Jun 25 #Python
使用Python微信库itchat获得好友和群组已撤回的消息
Jun 24 #Python
You might like
终于听上了直流胆调频
2021/03/02 无线电
解决File size limit exceeded 错误的方法
2013/06/14 PHP
Yii使用migrate命令执行sql语句的方法
2016/03/15 PHP
PHP的Json中文处理解决方案
2016/09/29 PHP
JavaScript等比例缩放图片控制超出范围的图片
2013/08/06 Javascript
JQuery性能优化的几点建议
2014/05/14 Javascript
使用script的src实现跨域和类似ajax效果
2014/11/10 Javascript
jQuery提示效果代码分享
2014/11/20 Javascript
jQuery实现的网页右下角tab样式在线客服效果代码
2015/10/23 Javascript
详解JavaScript的表达式与运算符
2015/11/30 Javascript
Angular页面间切换及传值的4种方法
2016/11/04 Javascript
JS实用的带停顿的逐行文本循环滚动效果实例
2016/11/23 Javascript
jQuery源码分析之sizzle选择器详解
2017/02/13 Javascript
微信小程序中weui用法解析
2019/10/21 Javascript
vue.js实现简单购物车功能
2020/05/30 Javascript
javascript实现京东登录显示隐藏密码
2020/08/02 Javascript
[02:12]2015国际邀请赛 SHOWOPEN
2015/08/05 DOTA
python错误:AttributeError: 'module' object has no attribute 'setdefaultencoding'问题的解决方法
2014/08/22 Python
利用Python绘制MySQL数据图实现数据可视化
2015/03/30 Python
用Python制作检测Linux运行信息的工具的教程
2015/04/01 Python
学习python类方法与对象方法
2016/03/15 Python
python常用函数详解
2016/09/13 Python
解决PyCharm中光标变粗的问题
2017/08/05 Python
Python三级菜单的实例
2017/09/13 Python
实例讲解python中的序列化知识点
2018/10/08 Python
django序列化serializers过程解析
2019/12/14 Python
python numpy 矩阵堆叠实例
2020/01/17 Python
世界知名接发和假发品牌:Poze Hair
2017/03/08 全球购物
英国最大的高品质珠宝和手表专家:Goldsmiths
2017/03/11 全球购物
经典C++面试题一
2016/11/06 面试题
大学生自我鉴定
2013/12/08 职场文书
健康家庭事迹材料
2014/05/02 职场文书
2014年医院十一国庆节活动方案
2014/09/15 职场文书
2014年店长工作总结
2014/11/17 职场文书
2015年教师新年寄语
2014/12/08 职场文书
nginx服务器的下载安装与使用详解
2021/08/02 Servers