python实现kNN算法


Posted in Python onDecember 20, 2017

kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。

k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测。所以可以说,k近邻法不具有显示的学习过程。k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”

k值的选择,距离的度量和分类决策规则是k近邻算法的三个基本要素。

这里需要说明的是,对于距离的度量,我们有很多种度量方法可以选择,如欧氏距离(2-范数),曼哈顿距离(1-范数),无穷范数等,根据不同的实例,我们可以选择不同的距离度量方法。

下面给出了利用python和sklearn库实现的kNN算法的过程及部分注释:

# coding=utf-8 
 
# 首先利用sklearn的库进行knn算法的建立与预测 
# from sklearn import neighbors 
# from sklearn import datasets 
# 
# knn = neighbors.KNeighborsClassifier()   # 调用分类器赋在变量knn上 
# 
# iris = datasets.load_iris()   # 返回一个数据库,赋值在iris上 
# 
# print iris   # 显示这个数据集 
# 
# knn.fit(iris.data, iris.target) # fit的第一个参数 是特征值矩阵,第二个参数是一维的向量 
# 
# predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]]) 
# 
# print predictedLabel 
 
# 下面自己写一个程序实现knn算法 
 
import csv 
import random 
import math 
import operator 
 
# filename是指文件名,split是某一个数字,数字前的数据当做训练集,数字后的数据当做测试集 
# trainingSet是训练集,testSet是测试集 
# 函数作用,加载文件,并将文件通过随机数的方法分为训练集和测试集 
def loadDataset(filename, split, trainingSet=[], testSet=[]): 
  with open(filename, 'rb') as csvfile:  # 导入文件为csvfile格式 
    lines = csv.reader(csvfile)   # 读取所有的行 reader函数的作用 
    dataset = list(lines)    # 将所有的行转换为list的数据节后 
    for x in range(len(dataset)-1):   # x在总共的行数中遍历 
      for y in range(4): 
        dataset[x][y] = float(dataset[x][y]) 
      if random.random() < split: 
        trainingSet.append(dataset[x]) 
      else: 
        testSet.append(dataset[x]) 
 
 
# 函数作用:计算欧氏距离 
# 函数的输入是两个实例和他们的维度 
def euclideanDistance(instance1, instance2, length): 
  distance = 0 
  for x in range(length):   # 对于每一个维度内进行一个差的计算,计算出所有维度的平方和 
    distance += pow((instance1[x] - instance2[x]),2) 
  return math.sqrt(distance) 
 
# 函数作用:返回最近的k的neightbor 
# 也就是返回在trainingSet中距离testInstance最近的k个邻居 
def getNeigthbors(trainingSet, testInstance, k): 
  distances =[] # 距离的容器,用来存放所有的距离值 
  length = len(testInstance) - 1 # 用来存放testInstance的维度 
  for x in range(len(trainingSet)): 
    # 对于每一个x 计算训练集中的数据与实例的距离 
    dist = euclideanDistance(testInstance,trainingSet[x],length) 
    distances.append((trainingSet[x],dist)) 
  # 把这些距离从小到大排起来 
  distances.sort(key=operator.itemgetter(1)) 
  neighbors = [] 
  for x in range(k): 
    neighbors.append(distances[x][0]) 
  return neighbors    # 返回最近的邻居 
 
def getResponse(neighbors): 
  classVotes = {} 
  for x in range(len(neighbors)): 
    response = neighbors[x][-1] 
    if response in classVotes: 
      classVotes[response] += 1 
    else: 
      classVotes[response] = 1 
  sortedVotes = sorted(classVotes.iteritems(),key=operator.itemgetter(1),reverse=True) 
  return sortedVotes[0][0] 
 
# 用来检验预测结果的正确率 
def getAccuracy(testSet,predictions): 
  correct = 0 
  for x in range(len(testSet)): 
    if testSet[x][-1] == predictions[x]:    # [-1]值的是最后一个值,也就是每行的最后的值,即为花的分类 
      correct += 1 
  return (correct/float(len(testSet))) * 100.00 
 
 
def main(): 
  # prepare data 
  trainingSet = [] 
  testSet = [] 
  split = 0.67 
  loadDataset('irisdata.txt',split,trainingSet,testSet) # r的作用是防止错误字符串意思 
  print 'Train Set' + repr(len(trainingSet)) 
  print 'Test Set' + repr(len(testSet)) 
 
  # generate predicitions 
  predicitions = [] 
  k = 3 
  for x in range(len(testSet)): 
    neighbors = getNeigthbors(trainingSet,testSet[x],k) 
    result = getResponse(neighbors) 
    predicitions.append(result) 
    print('> predicition = ' + repr(result) + ', actual = ' +repr(testSet[x][-1])) 
  accuracy = getAccuracy(testSet,predicitions) 
  print('Accuracy:' + repr(accuracy) + '%') 
 
main()

程序执行后,相应的输出如下:

python实现kNN算法

Python 相关文章推荐
python实现将元祖转换成数组的方法
May 04 Python
python实现闹钟定时播放音乐功能
Jan 25 Python
详解tensorflow实现迁移学习实例
Feb 10 Python
Python unittest 简单实现参数化的方法
Nov 30 Python
python抓取网页内容并进行语音播报的方法
Dec 24 Python
Python笔试面试题小结
Sep 07 Python
Python操作SQLite/MySQL/LMDB数据库的方法
Nov 07 Python
使用pyqt5 tablewidget 单元格设置正则表达式
Dec 13 Python
python实现猜单词游戏
May 22 Python
python软件都是免费的吗
Jun 18 Python
Python matplotlib读取excel数据并用for循环画多个子图subplot操作
Jul 14 Python
django使用graphql的实例
Sep 02 Python
解析Python中的eval()、exec()及其相关函数
Dec 20 #Python
详解Python中 sys.argv[]的用法简明解释
Dec 20 #Python
简单了解Django模板的使用
Dec 20 #Python
python机器学习之决策树分类详解
Dec 20 #Python
python机器学习之神经网络(三)
Dec 20 #Python
python机器学习之神经网络(二)
Dec 20 #Python
PyCharm 常用快捷键和设置方法
Dec 20 #Python
You might like
php的XML文件解释类应用实例
2014/09/22 PHP
php微信公众平台交互与接口详解
2016/11/28 PHP
PHP中检索字符串的方法分析【strstr与substr_count方法】
2017/02/17 PHP
[原创]php token使用与验证示例【测试可用】
2017/08/30 PHP
浅谈php使用curl模拟多线程发送请求
2019/03/08 PHP
jquery validation插件表单验证的一个例子
2010/03/03 Javascript
Json对象替换字符串占位符实现代码
2010/11/17 Javascript
jquery实现兼容IE8的异步上传文件
2015/06/15 Javascript
javascript实现动态标签云
2015/10/16 Javascript
利用AJAX实现WordPress中的文章列表及评论的分页功能
2016/05/17 Javascript
轻松5句话解决JavaScript的作用域
2016/07/15 Javascript
微信小程序 SocketIO 实例讲解
2016/10/13 Javascript
vue实现移动端H5数字键盘组件使用详解
2020/08/25 Javascript
Windows下Python使用Pandas模块操作Excel文件的教程
2016/05/31 Python
Python实现好友全头像的拼接实例(推荐)
2017/06/24 Python
python使用TensorFlow进行图像处理的方法
2018/02/28 Python
利用python和ffmpeg 批量将其他图片转换为.yuv格式的方法
2019/01/08 Python
对Python 多线程统计所有csv文件的行数方法详解
2019/02/12 Python
python多线程抽象编程模型详解
2019/03/20 Python
python assert的用处示例详解
2019/04/01 Python
Pycharm 文件更改目录后,执行路径未更新的解决方法
2019/07/19 Python
探秘TensorFlow 和 NumPy 的 Broadcasting 机制
2020/03/13 Python
vscode调试django项目的方法
2020/08/06 Python
利用Python实现学生信息管理系统的完整实例
2020/12/30 Python
Wiggle中国:英国骑行、跑步、游泳 & 铁三运动装备专卖网店
2016/08/02 全球购物
LightInTheBox西班牙站点:全球商品在线采购
2016/09/22 全球购物
澳大利亚快时尚鞋类市场:Billini
2018/05/20 全球购物
美国购买体育、音乐会和剧院门票网站:SelectATicket
2019/09/08 全球购物
个人授权委托书格式
2014/08/30 职场文书
邮政竞聘演讲稿
2014/09/03 职场文书
2014年为民办实事工作总结
2014/12/20 职场文书
写给老师的感谢信
2015/01/20 职场文书
文艺晚会开场白
2015/05/29 职场文书
医院见习总结
2015/06/24 职场文书
导游词之麻姑仙境
2019/11/18 职场文书
前端JS获取URL参数的4种方法总结
2022/04/05 Javascript