OpenCV实现人脸识别


Posted in Python onApril 07, 2017

主要有以下步骤:

1、人脸检测

2、人脸预处理

3、从收集的人脸训练机器学习算法

4、人脸识别

5、收尾工作

人脸检测算法:

基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比脸颊更暗等情形。它通常执行大约20个这样的比较来决定所检测的对象是否为人脸,实际上经常会做上千次。

基于LBP的人脸检测器基本思想与基于Haar的人脸检测器类似,但它比较的是像素亮度直方图,例如,边缘、角落和平坦区域的直方图。

这两种人脸检测器可通过训练大的图像集找到人脸,这些图像集在opencv中存在XML文件中以便后续使用。

这些级联分类检测器通常至少需使用1000个独特的人脸图像和10000个非人脸图像作为训练,训练时间一般LBP要几个小时,

Haar要一个星期。

项目中的关键代码如下:

initDetectors
faceCascade.load(faceCascadeFilename);
eyeCascade1.load(eyeCascadeFilename1);
eyeCascade2.load(eyeCascadeFilename2);

initWebcam
videoCapture.open(cameraNumber);

cvtColor(img, gray, CV_BGR2GRAY);
//有需要则缩小图片使检测运行更快,之后要恢复原来大小
resize(gray, inputImg, Size(scaledWidth, scaledHeight));
equalizeHist(inputImg, equalizedImg);
cascade.detectMultiScale(equalizedImg......);

人脸预处理:

实际中通常训练(采集图像)和测试(来自摄像机图像)的图像会有很大不同,受(如光照、人脸方位、表情等),

结果会很差,因此用于训练的数据集很重要。

人脸预处理目的是减少这类问题,有助于提高整个人脸识别系统的可靠性。

人脸预处理的最简单形式就是使用equalizeHist()函数做直方图均衡,这与人脸检测那步一样。

实际中,为了让检测算法更可靠,会使用面部特征检测(如,检测眼睛、鼻子、嘴巴和眉毛),本项目只使用眼睛检测。

使用OpenCV自带的训练好的眼部探测器。如,正面人脸检测完毕后,得到一个人脸,在使用眼睛检测器提取人脸的左眼区域和右眼区域,并对每个眼部区域进行直方图均衡。

这步涉及的操作有以下内容:

1、几何变换和裁剪

人脸对齐很重要,旋转人脸使眼睛保持水平,缩放人脸使眼睛之间距离始终相同,平移人脸使眼睛总是在所需高度上水平居中,

裁剪人脸外围(如图像背景、头发、额头、耳朵和下巴)。

2、对人脸左侧和右侧分别用直方图均衡

3、平滑

用双边滤波器来减少图像噪声

4、椭圆掩码

将剩余头发和人脸图像背景去掉

项目中的关键代码如下:

detectBothEyes(const Mat &face, CascadeClassifier &eyeCascade1, CascadeClassifier &eyeCascade2,
Point &leftEye, Point &rightEye, Rect *searchedLeftEye, Rect *searchedRightEye);
topLeftOfFace = face(Rect(leftX, topY, widthX, heightY));
//在左脸区域内检测左眼
detectLargestObject(topLeftOfFace, eyeCascade1, leftEyeRect, topLeftOfFace.cols);
//右眼类似,这样眼睛中心点就得到了
leftEye = Point(leftEyeRect.x + leftEyeRect.width/2, leftEyeRect.y + leftEyeRect.height/2);
//再得到两眼的中点,然后计算两眼之间的角度
Point2f eyesCenter = Point2f( (leftEye.x + rightEye.x) * 0.5f, (leftEye.y + rightEye.y) * 0.5f );
//仿射扭曲(Affine Warping)需要一个仿射矩阵
rot_mat = getRotationMatrix2D(eyesCenter, angle, scale);
//现在可变换人脸来得到检测到的双眼出现在人脸的所需位置
warpAffine(gray, warped, rot_mat, warped.size());

//先对人脸左侧和右侧分开进行直方图均衡
equalizeHist(leftSide, leftSide);
equalizeHist(rightSide, rightSide);
//再合并,这里合并时左侧1/4和右侧1/4直接取像素值,中间的2/4区域像素值通过一定计算进行处理。

//双边滤波
bilateralFilter(warped, filtered, 0, 20.0, 2.0);

//采用椭圆掩码来删除一些区域
filtered.copyTo(dstImg, mask);

收集并训练人脸:

一个好的数据集应包含人脸变换的各种情形,这些变化可能出现在训练集中。如只测试正面人脸,则只需训练图像有完全正面人脸即可。

因此一个好的训练集应包含很多实际情形。

本项目收集的图像之间至少有一秒的间隔,使用基于L2范数的相对错误评价标准来比较两幅图像素之间的相似性。

errorL2 = norm(A, B, CV_L2);
similarity = errorL2 / (double)(A.rows * A.cols);

再与收集新人脸的阈值相比来决定是否收集这次图像。

可用很多技巧来获取更多的训练数据,如,使用镜像人脸、加入随机噪声、改变人脸图像的一些像素、旋转等。

//翻转
flip(preprocessedFace, mirroredFace, 1);

对每个人收集到足够多的人脸图像后,接下来必须选择适合人脸识别的机器学习算法,通过它来学习收集的数据,从而训练出一个人脸识别系统。

人脸识别算法:

1、特征脸,也称PCA(主成分分析)

2、Fisher脸,也称LDA(线性判别分析)

3、局部二值模式直方图(Local Binary Pattern Histograms,LBPH)

其他人脸识别算法:www.face-rec.org/algorithms/

OpenCV提供了CV::Algorithm类,该类有几种不同的算法,用其中一种算法就可以完成简单而通用的人脸识别。

OpenCV的contrib模板中有一个FaceRecognizer类,它实现以上这些人脸识别算法。

initModule_contrib();
model = Algorithm::create<FaceRecognizer>(facerecAlgorithm);

model->train(preprocessedFaces, faceLabels);

这一代码将执行所选人脸识别的整个训练算法。

人脸识别:

1、人脸识别:通过人脸来识别这个人

可以简单调用FaceRecognizer::predict()函数来识别照片中的人,

int identity = model->predict(preprocessedFace);

它带来的问题是它总能预测给定的人(即使输入图像不属于训练集中的人)。

解决此问题的办法是制定置信度标准,置信度过低则可判读是一个不认识的人。

2、人脸验证:验证图像中是否有想找的人

为了验证是否可靠,或者说系统是否能对一个不认识的人进行正确识别,这需要进行人脸验证。

这里计算置信度的方法是:

使用特征向量和特征值重构人脸图,然后将输入的图像与重构图进行比较。如果一个人在训练集中有多张人脸图,用特征向量和特征

值重构后应该有非常好的效果,如果没有则差别很大,表明它可能是一个未知的人脸。

subspaceProject()函数将人脸图像映射到特征空间,再用subspaceReconstruct()函数从特征空间重构图像。

收尾:交互式GUI

利用OpenCV函数很容易绘制一些组件,鼠标点击等。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
Python 搭建Web站点之Web服务器与Web框架
Nov 06 Python
Python 内置函数memoryview(obj)的具体用法
Nov 23 Python
python实现zabbix发送短信脚本
Sep 17 Python
python实现Virginia无密钥解密
Mar 20 Python
深度辨析Python的eval()与exec()的方法
Mar 26 Python
Python collections模块使用方法详解
Aug 28 Python
Django框架 查询Extra功能实现解析
Sep 04 Python
python实现LRU热点缓存及原理
Oct 29 Python
解决pycharm下pyuic工具使用的问题
Apr 08 Python
python全栈开发语法总结
Nov 22 Python
python爬虫请求头的使用
Dec 01 Python
python 实现图与图之间的间距调整subplots_adjust
May 21 Python
python使用opencv进行人脸识别
Apr 07 #Python
Python 实现链表实例代码
Apr 07 #Python
python中如何使用朴素贝叶斯算法
Apr 06 #Python
python获取当前运行函数名称的方法实例代码
Apr 06 #Python
python爬取w3shcool的JQuery课程并且保存到本地
Apr 06 #Python
使用Python对SQLite数据库操作
Apr 06 #Python
使用Python对MySQL数据操作
Apr 06 #Python
You might like
PHP静态类
2006/11/25 PHP
特详细的PHPMYADMIN简明安装教程
2008/08/01 PHP
浅析php面向对象public private protected 访问修饰符
2013/06/30 PHP
摘自启点的main.js
2008/04/20 Javascript
Javascript中获取出错代码所在文件及行数的代码
2010/09/23 Javascript
jQuery源码中的chunker 正则过滤符分析
2012/07/31 Javascript
jQuery对象数据缓存Cache原理及jQuery.data方法区别介绍
2013/04/07 Javascript
使用CSS和jQuery模拟select并附提交后取得数据的代码
2013/10/18 Javascript
悬浮数字的实现案例
2014/02/19 Javascript
JavaScript中获取样式的原生方法小结
2014/10/08 Javascript
基于js实现微信发送好友如何分享到朋友圈、微博
2015/11/30 Javascript
JavaScript Date对象详解
2016/03/01 Javascript
详解angularJS自定义指令间的相互交互
2017/07/05 Javascript
JS如何实现在页面上快速定位(锚点跳转问题)
2017/08/14 Javascript
mui框架 页面无法滚动的解决方法(推荐)
2018/01/25 Javascript
vue-swiper的使用教程
2018/08/30 Javascript
在vue中使用防抖和节流,防止重复点击或重复上拉加载实例
2019/11/13 Javascript
AI小程序之语音听写来了,十分钟掌握百度大脑语音听写全攻略
2020/03/13 Javascript
详解vue-cli项目在IE浏览器打开报错解决方法
2020/12/10 Vue.js
[57:55]完美世界DOTA2联赛PWL S3 Magma vs Phoenix 第二场 12.12
2020/12/16 DOTA
python检测lvs real server状态
2014/01/22 Python
Pyspider中给爬虫伪造随机请求头的实例
2018/05/07 Python
解决pycharm启动后总是不停的updating indices...indexing的问题
2019/11/27 Python
浅谈pytorch、cuda、python的版本对齐问题
2020/01/15 Python
Python日志syslog使用原理详解
2020/02/18 Python
python绘制封闭多边形教程
2020/02/18 Python
Python3中对json格式数据的分析处理
2021/01/28 Python
装修五一活动策划案
2014/01/23 职场文书
大学生会计职业生涯规划范文
2014/02/28 职场文书
人事任命书怎么写
2014/06/05 职场文书
申报优秀教师材料
2014/12/16 职场文书
公务员政审材料
2014/12/23 职场文书
党员倡议书
2015/01/19 职场文书
教师年度个人总结
2015/02/11 职场文书
活动宣传稿范文
2015/07/23 职场文书
MySQL学习必备条件查询数据
2022/03/25 MySQL