python使用opencv进行人脸识别


Posted in Python onApril 07, 2017

环境

ubuntu 12.04 LTS
python 2.7.3
opencv 2.3.1-7

安装依赖

sudo apt-get install libopencv-*
sudo apt-get install python-opencv
sudo apt-get install python-numpy

示例代码

#!/usr/bin/env python
#coding=utf-8
import os
from PIL import Image, ImageDraw
import cv

def detect_object(image):
 '''检测图片,获取人脸在图片中的坐标'''
 grayscale = cv.CreateImage((image.width, image.height), 8, 1)
 cv.CvtColor(image, grayscale, cv.CV_BGR2GRAY)

 cascade = cv.Load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml")
 rect = cv.HaarDetectObjects(grayscale, cascade, cv.CreateMemStorage(), 1.1, 2,
  cv.CV_HAAR_DO_CANNY_PRUNING, (20,20))

 result = []
 for r in rect:
  result.append((r[0][0], r[0][1], r[0][0]+r[0][2], r[0][1]+r[0][3]))

 return result

def process(infile):
 '''在原图上框出头像并且截取每个头像到单独文件夹'''
 image = cv.LoadImage(infile);
 if image:
  faces = detect_object(image)

 im = Image.open(infile)
 path = os.path.abspath(infile)
 save_path = os.path.splitext(path)[0]+"_face"
 try:
  os.mkdir(save_path)
 except:
  pass
 if faces:
  draw = ImageDraw.Draw(im)
  count = 0
  for f in faces:
   count += 1
   draw.rectangle(f, outline=(255, 0, 0))
   a = im.crop(f)
   file_name = os.path.join(save_path,str(count)+".jpg")
  #  print file_name
   a.save(file_name)

  drow_save_path = os.path.join(save_path,"out.jpg")
  im.save(drow_save_path, "JPEG", quality=80)
 else:
  print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
 process("./opencv_in.jpg")

转换效果

原图:

python使用opencv进行人脸识别

转换后

python使用opencv进行人脸识别

使用感受

对于大部分图像来说,只要是头像是正面的,没有被阻挡,识别基本没问题,准确性还是很高的。

识别效率有点低,有时候一张图片能处理七八秒才能处理完,当然这个和机器配置有关。 如果想加速的话可以使用C语言重写,经测试,C语言版的所花时间大约是python的一半

另外,官方提供了几个库可一选择,这里使用的是haarcascade_frontalface_alt_tree.xml, 除此之外,  /usr/share/opencv/haarcascades/文件夹下还有几个库:

~~/usr/share/opencv/haarcascades>> ll -h
总用量 19M
drwxr-xr-x 2 root root 4.0K 3月 22 17:14 ./
drwxr-xr-x 4 root root 4.0K 3月 22 17:14 ../
-rw-r--r-- 1 root root 1.1M 4月 28 2011 haarcascade_eye_tree_eyeglasses.xml
-rw-r--r-- 1 root root 495K 4月 28 2011 haarcascade_eye.xml
-rw-r--r-- 1 root root 818K 4月 28 2011 haarcascade_frontalface_alt2.xml
-rw-r--r-- 1 root root 3.5M 4月 28 2011 haarcascade_frontalface_alt_tree.xml
-rw-r--r-- 1 root root 899K 4月 28 2011 haarcascade_frontalface_alt.xml
-rw-r--r-- 1 root root 1.2M 4月 28 2011 haarcascade_frontalface_default.xml
-rw-r--r-- 1 root root 622K 4月 28 2011 haarcascade_fullbody.xml
-rw-r--r-- 1 root root 316K 4月 28 2011 haarcascade_lefteye_2splits.xml
-rw-r--r-- 1 root root 520K 4月 28 2011 haarcascade_lowerbody.xml
-rw-r--r-- 1 root root 350K 4月 28 2011 haarcascade_mcs_eyepair_big.xml
-rw-r--r-- 1 root root 401K 4月 28 2011 haarcascade_mcs_eyepair_small.xml
-rw-r--r-- 1 root root 306K 8月 2 2011 haarcascade_mcs_leftear.xml
-rw-r--r-- 1 root root 760K 4月 28 2011 haarcascade_mcs_lefteye.xml
-rw-r--r-- 1 root root 703K 4月 28 2011 haarcascade_mcs_mouth.xml
-rw-r--r-- 1 root root 1.6M 4月 28 2011 haarcascade_mcs_nose.xml
-rw-r--r-- 1 root root 318K 8月 2 2011 haarcascade_mcs_rightear.xml
-rw-r--r-- 1 root root 1.4M 4月 28 2011 haarcascade_mcs_righteye.xml
-rw-r--r-- 1 root root 1.5M 4月 28 2011 haarcascade_mcs_upperbody.xml
-rw-r--r-- 1 root root 1.1M 4月 28 2011 haarcascade_profileface.xml
-rw-r--r-- 1 root root 317K 4月 28 2011 haarcascade_righteye_2splits.xml
-rw-r--r-- 1 root root 1022K 4月 28 2011 haarcascade_upperbody.xml
~/usr/share/opencv/haarcascades>>

根据文件名大家应该能知道是识别什么的。值得一提的是,这里面有四个关于人脸(frontalface)的识别库, 根据我的使用体验,default这个xml识别的最多,这就意味着本来不是头像的也识别成头像了。 alt_tree这个库虽然是最大的,但并不意味着这个库是最好的,应该说,用这个库,识别是最严格的, 这就意味着,有些头像不能被识别,因为根据他的算法,他认为这不是头像。 其余两个和alt_tree差不多。具体识别细节大家可以打开相应的xml看一下。

上面的代码只是识别面部,并不包括头发,如果大家想抓一个完整的头像的话, 可以将识别出来的矩形框的上边缘增加一定的比例,比如增加20%头像的高度。

附:C++语言人脸识别代码

网上找的,亲测可用,效率比python高一点。

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#ifdef _EiC
#define WIN32
#endif
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
void detect_and_draw( IplImage* image );
const char* cascade_name =
"haarcascade_frontalface_alt.xml";
/* "haarcascade_profileface.xml";*/
int main( int argc, char** argv )
{
 CvCapture* capture = 0;
 IplImage *frame, *frame_copy = 0;
 int optlen = strlen("--cascade=");
 const char* input_name;
 if( argc > 1 && strncmp( argv[1], "--cascade=", optlen ) == 0 )
 {
  cascade_name = argv[1] + optlen;
  input_name = argc > 2 ? argv[2] : 0;
 }
 else
 {
  cascade_name = "/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml";
  //opencv装好后haarcascade_frontalface_alt2.xml的路径,
  //也可以把这个文件拷到你的工程文件夹下然后不用写路径名cascade_name= "haarcascade_frontalface_alt2.xml"; 
  //或者cascade_name ="C:\\Program Files\\OpenCV\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"
  input_name = argc > 1 ? argv[1] : 0;
 }
 cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
 if( !cascade )
 {
  fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
  fprintf( stderr,
    "Usage: facedetect --cascade=\"<cascade_path>\" [filename|camera_index]\n" );
  return -1;
 }
 storage = cvCreateMemStorage(0);
 if( !input_name || (isdigit(input_name[0]) && input_name[1] == '\0') )
 capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' );
 else
 capture = cvCaptureFromAVI( input_name ); 
 cvNamedWindow( "result", 1 );
 if( capture )
 {
  for(;;)
  {
   if( !cvGrabFrame( capture ))
   break;
   frame = cvRetrieveFrame( capture );
   if( !frame )
   break;
   if( !frame_copy )
   frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
          IPL_DEPTH_8U, frame->nChannels );
   if( frame->origin == IPL_ORIGIN_TL )
   cvCopy( frame, frame_copy, 0 );
   else
   cvFlip( frame, frame_copy, 0 );
   detect_and_draw( frame_copy );
   if( cvWaitKey( 10 ) >= 0 )
   break;
  }
  cvReleaseImage( &frame_copy );
  cvReleaseCapture( &capture );
 }
 else
 {
  const char* filename = input_name ? input_name : (char*)"lena.jpg";
  IplImage* image = cvLoadImage( filename, 1 );
  if( image )
  {
   detect_and_draw( image );
   cvWaitKey(0);
   cvReleaseImage( &image );
  }
  else
  {
   /* assume it is a text file containing the
   list of the image filenames to be processed - one per line */
   FILE* f = fopen( filename, "rt" );
   if( f )
   {
    char buf[1000+1];
    while( fgets( buf, 1000, f ) )
    {
     int len = (int)strlen(buf);
     while( len > 0 && isspace(buf[len-1]) )
     len--;
     buf[len] = '\0';
     image = cvLoadImage( buf, 1 );
     if( image )
     {
      detect_and_draw( image );
      cvWaitKey(0);
      cvReleaseImage( &image );
     }
    }
    fclose(f);
   }
  }
 }
 // getchar();
 cvDestroyWindow("result");
 return 0;
}
void detect_and_draw( IplImage* img )
{
 static CvScalar colors[] = 
 {
  {{0,0,255}},
  {{0,128,255}},
  {{0,255,255}},
  {{0,255,0}},
  {{255,128,0}},
  {{255,255,0}},
  {{255,0,0}},
  {{255,0,255}}
 };
 double scale = 1.3;
 IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
 IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
            cvRound (img->height/scale)),
          8, 1 );
 int i;
 cvCvtColor( img, gray, CV_BGR2GRAY );
 cvResize( gray, small_img, CV_INTER_LINEAR );
 cvEqualizeHist( small_img, small_img );
 cvClearMemStorage( storage );
 if( cascade )
 {
  double t = (double)cvGetTickCount();
  CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
           1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
           cvSize(30, 30) );
  t = (double)cvGetTickCount() - t;
  printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
  for( i = 0; i < (faces ? faces->total : 0); i++ )
  {
   CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
   CvPoint center;
   int radius;
   center.x = cvRound((r->x + r->width*0.5)*scale);
   center.y = cvRound((r->y + r->height*0.5)*scale);
   radius = cvRound((r->width + r->height)*0.25*scale);
   cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
  }
 }
 cvShowImage( "result", img );
 cvReleaseImage( &gray );
 cvReleaseImage( &small_img );
}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
浅谈Python中copy()方法的使用
May 21 Python
Python中list列表的一些进阶使用方法介绍
Aug 15 Python
Python爬虫天气预报实例详解(小白入门)
Jan 24 Python
使用selenium和pyquery爬取京东商品列表过程解析
Aug 15 Python
PyCharm使用之配置SSH Interpreter的方法步骤
Dec 26 Python
Python基于Tensor FLow的图像处理操作详解
Jan 15 Python
基于python实现语音录入识别代码实例
Jan 17 Python
python dumps和loads区别详解
Feb 04 Python
已安装tensorflow-gpu,但keras无法使用GPU加速的解决
Feb 07 Python
Tensorflow训练模型越来越慢的2种解决方案
Feb 07 Python
Python selenium爬虫实现定时任务过程解析
Jun 08 Python
Python+pyaudio实现音频控制示例详解
Jul 23 Python
Python 实现链表实例代码
Apr 07 #Python
python中如何使用朴素贝叶斯算法
Apr 06 #Python
python获取当前运行函数名称的方法实例代码
Apr 06 #Python
python爬取w3shcool的JQuery课程并且保存到本地
Apr 06 #Python
使用Python对SQLite数据库操作
Apr 06 #Python
使用Python对MySQL数据操作
Apr 06 #Python
windows 10下安装搭建django1.10.3和Apache2.4的方法
Apr 05 #Python
You might like
php代码书写习惯优化小结
2013/06/20 PHP
jquery刷新页面的实现代码(局部及全页面刷新)
2011/07/11 Javascript
JS操作Cookies包括(读取添加与删除)
2012/12/26 Javascript
中文字符串截取的js函数代码
2013/04/17 Javascript
Javascript 鼠标移动上去小三角形滑块缓慢跟随效果
2013/04/26 Javascript
JavaScript事件委托的技术原理探讨示例
2014/04/17 Javascript
jQuery中nextUntil()方法用法实例
2015/01/07 Javascript
jQuery链式操作实例分析
2015/11/16 Javascript
jQueryUI Datepicker组件设置日期高亮
2016/10/13 Javascript
详解使用JS如何制作简单的ASCII图与单极图
2017/03/31 Javascript
解决JS外部文件中文注释出现乱码问题
2017/07/09 Javascript
对angularjs框架下controller间的传值方法详解
2018/10/08 Javascript
jQuery实现简单的Ajax调用功能示例
2019/02/15 jQuery
python二叉树的实现实例
2013/11/21 Python
Python中使用scapy模拟数据包实现arp攻击、dns放大攻击例子
2014/10/23 Python
Python实现简单登录验证
2016/04/13 Python
windows下python连接oracle数据库
2017/06/07 Python
简单实现python收发邮件功能
2018/01/05 Python
python使用folium库绘制地图点击框
2018/09/21 Python
Python3监控windows,linux系统的CPU、硬盘、内存使用率和各个端口的开启情况详细代码实例
2020/03/18 Python
基于Pyinstaller打包Python程序并压缩文件大小
2020/05/28 Python
Matplotlib 折线图plot()所有用法详解
2020/07/28 Python
12个不为大家熟知的HTML5设计小技巧
2016/06/02 HTML / CSS
HTML5制作表格样式
2016/11/15 HTML / CSS
日本钓鱼渔具和户外用品网上商店:naturum
2016/08/07 全球购物
CHRONEXT英国:您的首选奢华腕表目的地
2020/03/30 全球购物
医学生实习自荐信
2013/10/01 职场文书
家长寄语大全
2014/04/02 职场文书
委托书格式要求
2015/01/28 职场文书
水电工程师岗位职责
2015/02/13 职场文书
办公经费申请报告
2015/05/15 职场文书
2015年六年级班主任工作总结
2015/10/15 职场文书
nginx优化的六点方法
2021/03/31 Servers
Python import模块的缓存问题解决方案
2021/06/02 Python
python编程实现清理微信重复缓存文件
2021/11/01 Python
Python中time与datetime模块使用方法详解
2022/03/31 Python