Python图像处理之图像拼接


Posted in Python onApril 28, 2021

一、前言

图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。

二、特征点匹配

特征点具有局部差异性

动机:特征点具有局部差异性

Python图像处理之图像拼接

图像梯度

Python图像处理之图像拼接

Harris矩阵

Python图像处理之图像拼接
Python图像处理之图像拼接

以每个点为中心取一个窗口,窗口大小为55或者77,如果这个点具有差异性,往周围任意方向移动,周围的环境变化都是会比较大的,如果满足这个特性,我们就认为这个特征点具有明显的局部差异性。在工事中,I表示像素,如果是 彩色图像就是RGB,灰色图像就是灰度。(u,v)表示方向。然后对上式进行一阶泰勒展开。
Harris矩阵H的特征值分析:

Python图像处理之图像拼接

矩阵特征值反应了两个垂直方向的变化情况,一个事变化最快的方向,一个事变化最慢的方向

Python图像处理之图像拼接

Python图像处理之图像拼接

兴趣点位于光滑区域,不是特征点

Python图像处理之图像拼接

兴趣点位于边缘区域

Python图像处理之图像拼接

兴趣点位于角点区域

所以检测特征的任务转化为计算Harris矩阵,判断特征值大小。

在实际操作中,很少通过计算特征值来判断,因为计算特征值计算量比较大,取而代之的是Harris角点准则。

三、匹配错误的特征点干扰

在进行图像匹配过程中,如果图像的噪声太大,就会使得特征点的匹配发生了偏差,匹配到了错误的点,这种不好的匹配效果,会对后面的图像拼接产生很大的影响,如下图

Python图像处理之图像拼接

四、消除干扰

为了进一步提升匹配精度,可以采用随机样本一致性(RANSAC)方法。

因为我们是使用一幅图像(一个平面物体),我们可以将它定义为刚性的,可以在pattern image和query image的特征点之间找到单应性变换(homography transformation )。使用cv::findHomography找到这个单应性变换,使用RANSAC找到最佳单应性矩阵。(由于这个函数使用的特征点同时包含正确和错误匹配点,因此计算的单应性矩阵依赖于二次投影的准确性)

五、RANSAC进行图像匹配

RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。

RANSAC的基本假设是:

(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。

局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。

RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。

RANSAC原理

OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h3=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对。

Python图像处理之图像拼接

其中(x,y)表示目标图像角点位置,(x',y')为场景图像角点位置,s为尺度参数。

RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。

Python图像处理之图像拼接

RANSAC算法步骤:

1.随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出单应矩阵H,记为模型M;

2.计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;

3.如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;

4.如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;

注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;
其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;

Python图像处理之图像拼接
Python图像处理之图像拼接

使用RANSAC图片匹配

from numpy import *
from matplotlib.pyplot import *
from PIL import Image
import warp
import homography
from PCV.localdescriptors import sift

featname = ['img/' + str(i + 1) + '.sift' for i in range(5)]
imname = ['img/' + str(i + 1) + '.jpg' for i in range(5)]
l = {}
d = {}
for i in range(5):
    sift.process_image(imname[i], featname[i])
    l[i], d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
    matches[i] = sift.match(d[i + 1], d[i])

# visualize the matches (Figure 3-11 in the book)
for i in range(4):
    im1 = array(Image.open(imname[i]))
    im2 = array(Image.open(imname[i + 1]))
    figure()
    sift.plot_matches(im2, im1, l[i + 1], l[i], matches[i], show_below=True)

# 将匹配转换成齐次坐标点的函数
def convert_points(j):
    ndx = matches[j].nonzero()[0]
    fp = homography.make_homog(l[j + 1][ndx, :2].T)
    ndx2 = [int(matches[j][i]) for i in ndx]
    tp = homography.make_homog(l[j][ndx2, :2].T)

    # switch x and y - TODO this should move elsewhere
    fp = vstack([fp[1], fp[0], fp[2]])
    tp = vstack([tp[1], tp[0], tp[2]])
    return fp, tp


# 估计单应性矩阵
model = homography.RanSacModel()

fp, tp = convert_points(1)
H_12 = homography.H_from_ransac(fp, tp, model)[0]  # im 1 to 2
fp, tp = convert_points(0)
H_01 = homography.H_from_ransac(fp, tp, model)[0]  # im 0 to 1
tp, fp = convert_points(2)  # NB: reverse order
H_32 = homography.H_from_ransac(fp, tp, model)[0]  # im 3 to 2
tp, fp = convert_points(3)  # NB: reverse order
H_43 = homography.H_from_ransac(fp, tp, model)[0]  # im 4 to 3

# 扭曲图像
delta = 100  # 用于填充和平移 for padding and translation

im1 = array(Image.open(imname[1]), "uint8")
im2 = array(Image.open(imname[2]), "uint8")
im_12 = warp.panorama(H_12, im1, im2, delta, delta)
im1 = array(Image.open(imname[0]), "f")
im_02 = warp.panorama(dot(H_12, H_01), im1, im_12, delta, delta)
im1 = array(Image.open(imname[3]), "f")
im_32 = warp.panorama(H_32, im1, im_02, delta, delta)
im1 = array(Image.open(imname[4]), "f")
im_42 = warp.panorama(dot(H_32, H_43), im1, im_32, delta, 2 * delta)

figure()
imshow(array(im_42, "uint8"))
axis('off')
show()

进行匹配的图片

Python图像处理之图像拼接
Python图像处理之图像拼接

匹配后的图片

Python图像处理之图像拼接
Python图像处理之图像拼接
Python图像处理之图像拼接

分析:

本次的拼接效果比较好,原因是因为我在同一时刻差不多角度拍摄的照片,噪声比较小,之前一组图片拍摄的噪声太大,导致最后出现不了结果。
由图片这部分可得,在不同时刻下拍摄照片导致天空颜色不同,在拼接的时候也会有明显的分割线。

Python图像处理之图像拼接

在实验过程中,刚开始使用了一组照片,但运行不出结果,后来经过查询找到原因是因为图片匹配度太低,没办法进行匹配,后来重新拍摄了一组图片最终才完成。

Python图像处理之图像拼接

到此这篇关于Python图像处理之图像拼接的文章就介绍到这了,更多相关Python图像拼接内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现压缩与解压gzip大文件的方法
Sep 18 Python
Python 获得命令行参数的方法(推荐)
Jan 24 Python
python Pandas 读取txt表格的实例
Apr 29 Python
python和shell获取文本内容的方法
Jun 05 Python
浅谈python下tiff图像的读取和保存方法
Dec 04 Python
Python提取频域特征知识点浅析
Mar 04 Python
Python socket模块ftp传输文件过程解析
Nov 05 Python
解决windows上安装tensorflow时报错,“DLL load failed: 找不到指定的模块”的问题
May 20 Python
pycharm中leetcode插件使用图文详解
Dec 07 Python
Python调用高德API实现批量地址转经纬度并写入表格的功能
Jan 12 Python
Python基础之常用库常用方法整理
Apr 30 Python
python数字图像处理数据类型及颜色空间转换
Jun 28 Python
4种非常实用的python内置数据结构
Apr 28 #Python
Python基础详解之描述符
Apr 28 #Python
详解Python 3.10 中的新功能和变化
Apr 28 #Python
Python基础之数据结构详解
Apr 28 #Python
Python基础详解之邮件处理
python实现黄金分割法的示例代码
Apr 28 #Python
Python 流媒体播放器的实现(基于VLC)
You might like
利用Memcached在php下实现session机制 替换PHP的原生session支持
2010/08/21 PHP
PHP中foreach循环中使用引用要注意的地方
2011/01/02 PHP
Zend Studio (eclipse)使用速度优化方法
2011/03/23 PHP
php中{}大括号是什么意思
2013/12/01 PHP
php判断GIF图片是否为动画的方法
2020/09/04 PHP
php中call_user_func函数使用注意事项
2014/11/21 PHP
利用PHP绘图函数实现简单验证码功能的方法
2016/10/18 PHP
php表单文件iframe异步上传实例讲解
2017/07/26 PHP
php模式设计之观察者模式应用实例分析
2019/09/25 PHP
js prototype截取字符串函数
2010/04/01 Javascript
DIV+CSS+JS不间断横向滚动实现代码
2013/03/19 Javascript
Bootstrap实现响应式导航栏效果
2015/12/28 Javascript
JS+HTML5手机开发之滚动和惯性缓动实现方法分析
2016/06/12 Javascript
Vue.js基础知识小结
2017/01/13 Javascript
js实现省市级联效果分享
2017/08/10 Javascript
JavaScript变量基本使用方法实例分析
2019/11/15 Javascript
VUE.CLI4.0配置多页面入口的实现
2019/11/25 Javascript
python安装oracle扩展及数据库连接方法
2017/02/21 Python
简单实现python收发邮件功能
2018/01/05 Python
Python爬虫之pandas基本安装与使用方法示例
2018/08/08 Python
通过python实现随机交换礼物程序详解
2019/07/10 Python
python实现在线翻译功能
2020/03/03 Python
python3.7+selenium模拟淘宝登录功能的实现
2020/05/26 Python
利用scikitlearn画ROC曲线实例
2020/07/02 Python
澳大利亚拥有最好的家具和家居用品在线目的地:Nestz
2019/02/23 全球购物
服装电子商务创业计划书
2014/01/30 职场文书
百货商场楼层班组长竞聘书
2014/03/31 职场文书
学生请假条格式
2014/04/11 职场文书
《分一分》教学反思
2014/04/13 职场文书
婚前协议书范本
2014/04/15 职场文书
小学生环保标语
2014/06/13 职场文书
2014党员四风对照检查材料思想汇报
2014/09/17 职场文书
年度考核表个人总结
2015/03/06 职场文书
浅谈node.js中间件有哪些类型
2021/04/29 Javascript
一看就懂的MySQL的聚簇索引及聚簇索引是如何长高的
2021/05/25 MySQL
Python+tkinter实现高清图片保存
2022/03/13 Python