Python实现二分查找与bisect模块详解


Posted in Python onJanuary 13, 2017

前言

其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。

二分查找要求对象必须有序,其基本原理如下:

      1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

      2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

      3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high): 
 if high < low: 
 return None
 mid = (low + high) / 2 
 if lst[mid] > value: 
 return binary_search_recursion(lst, value, low, mid-1) 
 elif lst[mid] < value: 
 return binary_search_recursion(lst, value, mid+1, high) 
 else: 
 return mid 

def binary_search_loop(lst,value): 
 low, high = 0, len(lst)-1 
 while low <= high: 
 mid = (low + high) / 2 
 if lst[mid] < value: 
 low = mid + 1 
 elif lst[mid] > value: 
 high = mid - 1
 else:
 return mid 
 return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
 import random
 lst = [random.randint(0, 10000) for _ in xrange(100000)]
 lst.sort()

 def test_recursion():
 binary_search_recursion(lst, 999, 0, len(lst)-1)

 def test_loop():
 binary_search_loop(lst, 999)

 import timeit
 t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
 t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

 print "Recursion:", t1.timeit()
 print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

bisect 模块

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print'New Pos Contents'
print'--- --- --------'

l = []
for i in range(1, 15):
 r = random.randint(1, 100)
 position = bisect.bisect(l, r)
 bisect.insort(l, r)
 print'%3d %3d' % (r, position), l

输出结果:

New Pos Contents
--- --- --------
 14 0 [14]
 85 1 [14, 85]
 77 1 [14, 77, 85]
 26 1 [14, 26, 77, 85]
 50 2 [14, 26, 50, 77, 85]
 45 2 [14, 26, 45, 50, 77, 85]
 66 4 [14, 26, 45, 50, 66, 77, 85]
 79 6 [14, 26, 45, 50, 66, 77, 79, 85]
 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a))

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a))

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。

该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
 i = bisect.bisect(breakpoints, score)
 return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
 from bisect import bisect_left
 i = bisect_left(lst, x)
 if i != len(lst) and lst[i] == x:
 return i
 return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
Python将xml和xsl转换为html的方法
Mar 10 Python
Python用list或dict字段模式读取文件的方法
Jan 10 Python
Numpy之random函数使用学习
Jan 29 Python
Python3.5基础之变量、数据结构、条件和循环语句、break与continue语句实例详解
Apr 26 Python
PyQt5 对图片进行缩放的实例
Jun 18 Python
python制作朋友圈九宫格图片
Nov 03 Python
Python模块 _winreg操作注册表
Feb 05 Python
在pycharm中实现删除bookmark
Feb 14 Python
Python网络爬虫信息提取mooc代码实例
Mar 06 Python
Pytorch数据拼接与拆分操作实现图解
Apr 30 Python
详解Pycharm与anaconda安装配置指南
Aug 25 Python
用python批量解压带密码的压缩包
May 31 Python
python基础教程之五种数据类型详解
Jan 12 #Python
python实现斐波那契数列的方法示例
Jan 12 #Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 #Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 #Python
python获取当前用户的主目录路径方法(推荐)
Jan 12 #Python
Python获取文件所在目录和文件名的方法
Jan 12 #Python
深入理解Python中变量赋值的问题
Jan 12 #Python
You might like
php版阿里云OSS图片上传类详解
2016/12/01 PHP
基于Laravel 多个中间件的执行顺序详解
2019/10/21 PHP
指定位置如果有图片显示图片,无图片显示广告的JS
2010/06/05 Javascript
元素的内联事件处理函数的特殊作用域在各浏览器中存在差异
2011/01/12 Javascript
javascript打印输出json实例
2013/11/11 Javascript
jquery提示效果实例分析
2014/11/25 Javascript
js中this用法实例详解
2015/05/05 Javascript
jQuery菜单插件用法实例
2015/07/25 Javascript
JS实现很实用的对联广告代码(可自适应高度)
2015/09/18 Javascript
jQuery插件 Jqplot图表实例
2016/06/18 Javascript
使用node.js搭建服务器
2017/05/20 Javascript
JS实现的按钮点击颜色切换功能示例
2017/10/19 Javascript
用jQuery将JavaScript对象转换为querystring查询字符串的方法
2018/11/12 jQuery
node.js使用express框架进行文件上传详解
2019/03/03 Javascript
Vue快速实现通用表单验证的示例代码
2020/01/09 Javascript
jQuery加PHP实现图片上传并提交的示例代码
2020/07/16 jQuery
vant-ui组件调用Dialog弹窗异步关闭操作
2020/11/04 Javascript
Python自定义函数的创建、调用和函数的参数详解
2014/03/11 Python
从零学python系列之教你如何根据图片生成字符画
2014/05/23 Python
python面向对象_详谈类的继承与方法的重载
2017/06/07 Python
Python中的id()函数指的什么
2017/10/17 Python
数据清洗--DataFrame中的空值处理方法
2018/07/03 Python
Python开发的十个小贴士和技巧及长常犯错误
2018/09/27 Python
python+flask编写一个简单的登录接口
2020/11/13 Python
少先队活动总结
2014/08/29 职场文书
入股合作协议书
2014/10/12 职场文书
委托公证书格式
2015/01/26 职场文书
高中社区服务活动报告
2015/02/05 职场文书
北京青年观后感
2015/06/15 职场文书
本科毕业论文答辩稿
2015/06/23 职场文书
大学生读书笔记大全
2015/07/01 职场文书
乔迁新居祝福语
2019/11/04 职场文书
vue引入Excel表格插件的方法
2021/04/28 Vue.js
一文带你探究MySQL中的NULL
2021/11/11 MySQL
HTML中的表单元素介绍
2022/02/28 HTML / CSS
python数字类型和占位符详情
2022/03/13 Python