Python实现二分查找与bisect模块详解


Posted in Python onJanuary 13, 2017

前言

其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。

二分查找要求对象必须有序,其基本原理如下:

      1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

      2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

      3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high): 
 if high < low: 
 return None
 mid = (low + high) / 2 
 if lst[mid] > value: 
 return binary_search_recursion(lst, value, low, mid-1) 
 elif lst[mid] < value: 
 return binary_search_recursion(lst, value, mid+1, high) 
 else: 
 return mid 

def binary_search_loop(lst,value): 
 low, high = 0, len(lst)-1 
 while low <= high: 
 mid = (low + high) / 2 
 if lst[mid] < value: 
 low = mid + 1 
 elif lst[mid] > value: 
 high = mid - 1
 else:
 return mid 
 return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
 import random
 lst = [random.randint(0, 10000) for _ in xrange(100000)]
 lst.sort()

 def test_recursion():
 binary_search_recursion(lst, 999, 0, len(lst)-1)

 def test_loop():
 binary_search_loop(lst, 999)

 import timeit
 t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
 t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

 print "Recursion:", t1.timeit()
 print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

bisect 模块

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print'New Pos Contents'
print'--- --- --------'

l = []
for i in range(1, 15):
 r = random.randint(1, 100)
 position = bisect.bisect(l, r)
 bisect.insort(l, r)
 print'%3d %3d' % (r, position), l

输出结果:

New Pos Contents
--- --- --------
 14 0 [14]
 85 1 [14, 85]
 77 1 [14, 77, 85]
 26 1 [14, 26, 77, 85]
 50 2 [14, 26, 50, 77, 85]
 45 2 [14, 26, 45, 50, 77, 85]
 66 4 [14, 26, 45, 50, 66, 77, 85]
 79 6 [14, 26, 45, 50, 66, 77, 79, 85]
 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a))

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a))

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。

该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
 i = bisect.bisect(breakpoints, score)
 return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
 from bisect import bisect_left
 i = bisect_left(lst, x)
 if i != len(lst) and lst[i] == x:
 return i
 return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
Python的SQLAlchemy框架使用入门
Apr 29 Python
python安装cx_Oracle模块常见问题与解决方法
Feb 21 Python
Python登录注册验证功能实现
Jun 18 Python
解析Python的缩进规则的使用
Jan 16 Python
python3实现小球转动抽奖小游戏
Apr 15 Python
python从入门到精通 windows安装python图文教程
May 18 Python
Python3内置模块pprint让打印比print更美观详解
Jun 02 Python
pyqt5 禁止窗口最大化和禁止窗口拉伸的方法
Jun 18 Python
Python 实现加密过的PDF文件转WORD格式
Feb 04 Python
Python实现文件压缩和解压的示例代码
Aug 12 Python
Python的这些库,你知道多少?
Jun 09 Python
Python面向对象之内置函数相关知识总结
Jun 24 Python
python基础教程之五种数据类型详解
Jan 12 #Python
python实现斐波那契数列的方法示例
Jan 12 #Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 #Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 #Python
python获取当前用户的主目录路径方法(推荐)
Jan 12 #Python
Python获取文件所在目录和文件名的方法
Jan 12 #Python
深入理解Python中变量赋值的问题
Jan 12 #Python
You might like
如何获知PHP程序占用多少内存(memory_get_usage)
2012/09/23 PHP
修改yii2.0用户登录使用的user表为其它的表实现方法(推荐)
2017/08/01 PHP
php判断文件上传图片格式的实例详解
2017/09/30 PHP
javascript中的=等号个数问题两个跟三个有什么区别
2013/10/23 Javascript
JavaScript动态修改弹出窗口大小的方法
2015/04/06 Javascript
Javascript生成全局唯一标识符(GUID,UUID)的方法
2016/02/27 Javascript
JS代码防止SQL注入的方法(超简单)
2016/04/12 Javascript
利用JavaScript判断浏览器类型及版本
2016/08/23 Javascript
简单谈谈Vue 模板各类数据绑定
2016/09/25 Javascript
node+experss实现爬取电影天堂爬虫
2016/11/20 Javascript
基于JavaScript实现窗口拖动效果
2017/01/18 Javascript
layer弹出层框架alert与msg详解
2017/03/14 Javascript
浅谈vue中.vue文件解析流程
2018/04/24 Javascript
vue中根据时间戳判断对应的时间(今天 昨天 前天)
2019/12/20 Javascript
JavaScript禁止右击保存图片,禁止拖拽图片的实现代码
2020/04/28 Javascript
微信小程序实现日历签到
2020/09/21 Javascript
vue router-link 默认a标签去除下划线的实现
2020/11/06 Javascript
[02:44]DOTA2英雄基础教程 钢背兽
2013/12/19 DOTA
Python 执行字符串表达式函数(eval exec execfile)
2014/08/11 Python
Python 中的Selenium异常处理实例代码
2018/05/03 Python
在Pycharm中将pyinstaller加入External Tools的方法
2019/01/16 Python
简单了解python代码优化小技巧
2019/07/08 Python
Python学习笔记之列表推导式实例分析
2019/08/13 Python
python计算n的阶乘的方法代码
2019/10/25 Python
Python zip函数打包元素实例解析
2019/12/11 Python
Pytorch使用PIL和Numpy将单张图片转为Pytorch张量方式
2020/05/25 Python
Keras 中Leaky ReLU等高级激活函数的用法
2020/07/05 Python
Python 的 __str__ 和 __repr__ 方法对比
2020/09/02 Python
CSS3 RGBA色彩模式使用实例讲解
2016/04/26 HTML / CSS
使用HTML5在网页中嵌入音频和视频播放的基本方法
2016/02/22 HTML / CSS
iostream与iostream.h的区别
2015/01/16 面试题
活动邀请函范文
2014/01/19 职场文书
开业庆典主持词
2014/03/21 职场文书
法人授权委托书
2014/04/03 职场文书
2015年社区妇联工作总结
2015/04/21 职场文书
Minikube搭建Kubernetes集群
2022/03/31 Servers