Python实现二分查找与bisect模块详解


Posted in Python onJanuary 13, 2017

前言

其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。

二分查找要求对象必须有序,其基本原理如下:

      1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

      2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

      3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high): 
 if high < low: 
 return None
 mid = (low + high) / 2 
 if lst[mid] > value: 
 return binary_search_recursion(lst, value, low, mid-1) 
 elif lst[mid] < value: 
 return binary_search_recursion(lst, value, mid+1, high) 
 else: 
 return mid 

def binary_search_loop(lst,value): 
 low, high = 0, len(lst)-1 
 while low <= high: 
 mid = (low + high) / 2 
 if lst[mid] < value: 
 low = mid + 1 
 elif lst[mid] > value: 
 high = mid - 1
 else:
 return mid 
 return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
 import random
 lst = [random.randint(0, 10000) for _ in xrange(100000)]
 lst.sort()

 def test_recursion():
 binary_search_recursion(lst, 999, 0, len(lst)-1)

 def test_loop():
 binary_search_loop(lst, 999)

 import timeit
 t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
 t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

 print "Recursion:", t1.timeit()
 print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

bisect 模块

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print'New Pos Contents'
print'--- --- --------'

l = []
for i in range(1, 15):
 r = random.randint(1, 100)
 position = bisect.bisect(l, r)
 bisect.insort(l, r)
 print'%3d %3d' % (r, position), l

输出结果:

New Pos Contents
--- --- --------
 14 0 [14]
 85 1 [14, 85]
 77 1 [14, 77, 85]
 26 1 [14, 26, 77, 85]
 50 2 [14, 26, 50, 77, 85]
 45 2 [14, 26, 45, 50, 77, 85]
 66 4 [14, 26, 45, 50, 66, 77, 85]
 79 6 [14, 26, 45, 50, 66, 77, 79, 85]
 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a))

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a))

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。

该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
 i = bisect.bisect(breakpoints, score)
 return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
 from bisect import bisect_left
 i = bisect_left(lst, x)
 if i != len(lst) and lst[i] == x:
 return i
 return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
python实现mysql的单引号字符串过滤方法
Nov 14 Python
python UNIX_TIMESTAMP时间处理方法分析
Apr 18 Python
Python基于回溯法子集树模板解决全排列问题示例
Sep 07 Python
python re模块的高级用法详解
Jun 06 Python
Tensorflow 合并通道及加载子模型的方法
Jul 26 Python
Python scrapy增量爬取实例及实现过程解析
Dec 24 Python
python datetime处理时间小结
Apr 16 Python
python函数map()和partial()的知识点总结
May 26 Python
python rolling regression. 使用 Python 实现滚动回归操作
Jun 08 Python
Python生成随机验证码代码实例解析
Jun 09 Python
Python Web项目Cherrypy使用方法镜像
Nov 05 Python
Python matplotlib绘制雷达图
Apr 13 Python
python基础教程之五种数据类型详解
Jan 12 #Python
python实现斐波那契数列的方法示例
Jan 12 #Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 #Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 #Python
python获取当前用户的主目录路径方法(推荐)
Jan 12 #Python
Python获取文件所在目录和文件名的方法
Jan 12 #Python
深入理解Python中变量赋值的问题
Jan 12 #Python
You might like
浅析使用Turck-mmcache编译来加速、优化PHP代码
2013/06/20 PHP
PHP实现的DES加密解密类定义与用法示例
2020/11/02 PHP
asp批量修改记录的代码
2008/06/25 Javascript
Google Map API更新实现用户自定义标注坐标
2009/07/29 Javascript
JQuery与JSon实现的无刷新分页代码
2011/09/13 Javascript
js实现带搜索功能的下拉框实时搜索实时匹配
2013/11/05 Javascript
js中浮点型运算BUG的解决方法说明
2014/01/06 Javascript
js中document.write使用过程中的一点疑问解答
2014/03/20 Javascript
Jquery对数组的操作技巧整理
2014/03/25 Javascript
javascript中alert()与console.log()的区别
2015/08/26 Javascript
浅析javascript函数表达式
2016/02/10 Javascript
Javascript中浏览器窗口的基本操作总结
2016/08/18 Javascript
对Angular.js Controller如何进行单元测试
2016/10/25 Javascript
详解webpack介绍&amp;安装&amp;常用命令
2017/06/29 Javascript
Vue实现一个返回顶部backToTop组件
2017/07/25 Javascript
Node.JS 循环递归复制文件夹目录及其子文件夹下的所有文件
2017/09/18 Javascript
vue.js实现的绑定class操作示例
2018/07/06 Javascript
配置eslint规范项目代码风格
2019/03/11 Javascript
jQuery 图片查看器插件 Viewer.js用法简单示例
2020/04/04 jQuery
以Flask为例讲解Python的框架的使用方法
2015/04/29 Python
深入解析Python设计模式编程中建造者模式的使用
2016/03/02 Python
基于python内置函数与匿名函数详解
2018/01/09 Python
Python自然语言处理 NLTK 库用法入门教程【经典】
2018/06/26 Python
python代码 FTP备份交换机配置脚本实例解析
2019/08/01 Python
TensorFlow基于MNIST数据集实现车牌识别(初步演示版)
2019/08/05 Python
Python循环实现n的全排列功能
2019/09/16 Python
python使用socket实现的传输demo示例【基于TCP协议】
2019/09/24 Python
python新手学习使用库
2020/06/11 Python
html5 canvas fillRect坐标和大小的问题解决方法
2014/03/26 HTML / CSS
iPhoneX安全区域(Safe Area)底部小黑条在微信小程序和H5的屏幕适配
2020/04/08 HTML / CSS
新西兰Bookabach:查找全球度假屋
2020/12/03 全球购物
化学工程专业求职信
2014/08/10 职场文书
团代会邀请函
2015/02/02 职场文书
2015年社区党务工作总结
2015/04/21 职场文书
2015年中秋节主持词
2015/07/30 职场文书
golang goroutine顺序输出方式
2021/04/29 Golang