Python实现二分查找与bisect模块详解


Posted in Python onJanuary 13, 2017

前言

其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。

二分查找要求对象必须有序,其基本原理如下:

      1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

      2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

      3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high): 
 if high < low: 
 return None
 mid = (low + high) / 2 
 if lst[mid] > value: 
 return binary_search_recursion(lst, value, low, mid-1) 
 elif lst[mid] < value: 
 return binary_search_recursion(lst, value, mid+1, high) 
 else: 
 return mid 

def binary_search_loop(lst,value): 
 low, high = 0, len(lst)-1 
 while low <= high: 
 mid = (low + high) / 2 
 if lst[mid] < value: 
 low = mid + 1 
 elif lst[mid] > value: 
 high = mid - 1
 else:
 return mid 
 return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
 import random
 lst = [random.randint(0, 10000) for _ in xrange(100000)]
 lst.sort()

 def test_recursion():
 binary_search_recursion(lst, 999, 0, len(lst)-1)

 def test_loop():
 binary_search_loop(lst, 999)

 import timeit
 t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
 t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

 print "Recursion:", t1.timeit()
 print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

bisect 模块

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print'New Pos Contents'
print'--- --- --------'

l = []
for i in range(1, 15):
 r = random.randint(1, 100)
 position = bisect.bisect(l, r)
 bisect.insort(l, r)
 print'%3d %3d' % (r, position), l

输出结果:

New Pos Contents
--- --- --------
 14 0 [14]
 85 1 [14, 85]
 77 1 [14, 77, 85]
 26 1 [14, 26, 77, 85]
 50 2 [14, 26, 50, 77, 85]
 45 2 [14, 26, 45, 50, 77, 85]
 66 4 [14, 26, 45, 50, 66, 77, 85]
 79 6 [14, 26, 45, 50, 66, 77, 79, 85]
 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a))

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a))

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。

该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
 i = bisect.bisect(breakpoints, score)
 return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
 from bisect import bisect_left
 i = bisect_left(lst, x)
 if i != len(lst) and lst[i] == x:
 return i
 return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
wxPython事件驱动实例详解
Sep 28 Python
Python实现代码统计工具(终极篇)
Jul 04 Python
matplotlib设置legend图例代码示例
Dec 19 Python
详解python3中的真值测试
Aug 13 Python
python3实现网络爬虫之BeautifulSoup使用详解
Dec 19 Python
Python合并同一个文件夹下所有PDF文件的方法
Mar 11 Python
python3.7 的新特性详解
Jul 25 Python
python实现二分类的卡方分箱示例
Nov 22 Python
window环境pip切换国内源(pip安装异常缓慢的问题)
Dec 31 Python
python编程进阶之类和对象用法实例分析
Feb 21 Python
python中 _、__、__xx__()区别及使用场景
Jun 30 Python
Python基本的内置数据类型及使用方法
Apr 13 Python
python基础教程之五种数据类型详解
Jan 12 #Python
python实现斐波那契数列的方法示例
Jan 12 #Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 #Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 #Python
python获取当前用户的主目录路径方法(推荐)
Jan 12 #Python
Python获取文件所在目录和文件名的方法
Jan 12 #Python
深入理解Python中变量赋值的问题
Jan 12 #Python
You might like
php heredoc和phpwind的模板技术使用方法小结
2008/03/28 PHP
PHP提取数据库内容中的图片地址并循环输出
2010/03/21 PHP
php学习之变量的使用
2011/05/29 PHP
利用curl抓取远程页面内容的示例代码
2013/07/23 PHP
Javascript 生成指定范围数值随机数
2009/01/09 Javascript
jquery向.ashx文件post中文乱码问题的解决方法
2011/03/28 Javascript
js中document.getElementByid、document.all和document.layers区分介绍
2011/12/08 Javascript
js控制不同的时间段显示不同的css样式的实例代码
2013/11/04 Javascript
简单学习vue指令directive
2016/11/03 Javascript
微信小程序开发之选项卡(窗口底部TabBar)页面切换
2017/04/12 Javascript
vue 搭建后台系统模块化开发详解
2019/05/01 Javascript
原生JavaScript实现进度条
2021/02/19 Javascript
[53:36]Liquid vs VP Supermajor决赛 BO 第三场 6.10
2018/07/05 DOTA
python使用PIL缩放网络图片并保存的方法
2015/04/24 Python
python使用arp欺骗伪造网关的方法
2015/04/24 Python
完美解决Python2操作中文名文件乱码的问题
2017/01/04 Python
不可错过的十本Python好书
2017/07/06 Python
python DataFrame获取行数、列数、索引及第几行第几列的值方法
2018/04/08 Python
python re库的正则表达式入门学习教程
2019/03/08 Python
Python实现的企业粉丝抽奖功能示例
2019/07/26 Python
python脚本调用iftop 统计业务应用流量的思路详解
2019/10/11 Python
Python3实现配置文件差异对比脚本
2019/11/18 Python
使用Python爬取弹出窗口信息的实例
2020/03/14 Python
使用Python构造hive insert语句说明
2020/06/06 Python
Python控制台实现交互式环境执行
2020/06/09 Python
python 多线程共享全局变量的优劣
2020/09/24 Python
拉飞逸官网:Lafayette 148 New York
2020/07/15 全球购物
高三学生评语大全
2014/04/25 职场文书
公司租房协议书
2014/10/14 职场文书
2014年仓库管理员工作总结
2014/11/18 职场文书
大国崛起英国观后感
2015/06/02 职场文书
订货会主持词
2015/07/01 职场文书
小学生暑假安全保证书
2015/07/13 职场文书
2015党建工作简报
2015/07/21 职场文书
人事行政部各岗位职责说明书!
2019/07/15 职场文书
python实现进度条的多种实现
2021/04/29 Python