Python实现二分查找与bisect模块详解


Posted in Python onJanuary 13, 2017

前言

其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。

二分查找要求对象必须有序,其基本原理如下:

      1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

      2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

      3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high): 
 if high < low: 
 return None
 mid = (low + high) / 2 
 if lst[mid] > value: 
 return binary_search_recursion(lst, value, low, mid-1) 
 elif lst[mid] < value: 
 return binary_search_recursion(lst, value, mid+1, high) 
 else: 
 return mid 

def binary_search_loop(lst,value): 
 low, high = 0, len(lst)-1 
 while low <= high: 
 mid = (low + high) / 2 
 if lst[mid] < value: 
 low = mid + 1 
 elif lst[mid] > value: 
 high = mid - 1
 else:
 return mid 
 return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
 import random
 lst = [random.randint(0, 10000) for _ in xrange(100000)]
 lst.sort()

 def test_recursion():
 binary_search_recursion(lst, 999, 0, len(lst)-1)

 def test_loop():
 binary_search_loop(lst, 999)

 import timeit
 t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
 t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

 print "Recursion:", t1.timeit()
 print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

bisect 模块

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print'New Pos Contents'
print'--- --- --------'

l = []
for i in range(1, 15):
 r = random.randint(1, 100)
 position = bisect.bisect(l, r)
 bisect.insort(l, r)
 print'%3d %3d' % (r, position), l

输出结果:

New Pos Contents
--- --- --------
 14 0 [14]
 85 1 [14, 85]
 77 1 [14, 77, 85]
 26 1 [14, 26, 77, 85]
 50 2 [14, 26, 50, 77, 85]
 45 2 [14, 26, 45, 50, 77, 85]
 66 4 [14, 26, 45, 50, 66, 77, 85]
 79 6 [14, 26, 45, 50, 66, 77, 79, 85]
 10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
 3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
 1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a))

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a))

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。

该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
 i = bisect.bisect(breakpoints, score)
 return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
 from bisect import bisect_left
 i = bisect_left(lst, x)
 if i != len(lst) and lst[i] == x:
 return i
 return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
python实现爬取千万淘宝商品的方法
Jun 30 Python
python 递归遍历文件夹,并打印满足条件的文件路径实例
Aug 30 Python
对python中的iter()函数与next()函数详解
Oct 18 Python
Pandas:Series和DataFrame删除指定轴上数据的方法
Nov 10 Python
Python通过TensorFlow卷积神经网络实现猫狗识别
Mar 14 Python
浅谈PyTorch的可重复性问题(如何使实验结果可复现)
Feb 20 Python
Python中remove漏删和索引越界问题的解决
Mar 18 Python
python json.dumps() json.dump()的区别详解
Jul 14 Python
python爬虫爬取网页数据并解析数据
Sep 18 Python
Python 排序最长英文单词链(列表中前一个单词末字母是下一个单词的首字母)
Dec 14 Python
史上最详细的Python打包成exe文件教程
Jan 17 Python
Python tensorflow卷积神经Inception V3网络结构
May 06 Python
python基础教程之五种数据类型详解
Jan 12 #Python
python实现斐波那契数列的方法示例
Jan 12 #Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 #Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 #Python
python获取当前用户的主目录路径方法(推荐)
Jan 12 #Python
Python获取文件所在目录和文件名的方法
Jan 12 #Python
深入理解Python中变量赋值的问题
Jan 12 #Python
You might like
IIS7.X配置PHP运行环境小结
2011/06/09 PHP
linux下为php添加curl扩展的方法
2011/07/29 PHP
PHP中imagick函数的中文解释
2015/01/21 PHP
thinkphp ajaxfileupload实现异步上传图片的示例
2017/08/28 PHP
求得div 下 img的src地址的js代码
2007/02/28 Javascript
js 表单提交后按钮变灰的实例代码
2013/08/16 Javascript
一个网页标题title的闪动提示效果实现思路
2014/03/22 Javascript
JS针对Array的各种操作汇总
2016/11/29 Javascript
nodejs搭建本地服务器并访问文件的方法
2017/03/03 NodeJs
在create-react-app中使用css modules的示例代码
2018/07/31 Javascript
Vue.js路由实现选项卡简单实例
2019/07/24 Javascript
vue vant中picker组件的使用
2020/11/03 Javascript
通过滑动翻页效果实现和移动端click事件问题
2021/01/26 Javascript
详解vite+ts快速搭建vue3项目以及介绍相关特性
2021/02/25 Vue.js
python基础知识小结之集合
2015/11/25 Python
Python的几个高级语法概念浅析(lambda表达式闭包装饰器)
2016/05/28 Python
python爬虫中get和post方法介绍以及cookie作用
2018/02/08 Python
Python视频爬虫实现下载头条视频功能示例
2018/05/07 Python
详解小白之KMP算法及python实现
2019/04/04 Python
Python玩转PDF的各种骚操作
2019/05/06 Python
Python的缺点和劣势分析
2019/11/19 Python
世界上最大的高分辨率在线图片库:Alamy
2018/07/07 全球购物
台湾东南旅游社网站:东南旅游
2019/02/11 全球购物
澳大利亚购买最佳炊具品牌网站:Cookware Brands
2019/02/16 全球购物
国际领先的在线时尚服装和配饰店:DressLily
2019/03/03 全球购物
知识竞赛活动方案
2014/02/18 职场文书
材料会计岗位职责
2014/03/06 职场文书
教研处工作方案
2014/05/26 职场文书
创先争优一句话承诺
2014/05/29 职场文书
四风查摆问题及整改措施
2014/10/10 职场文书
玄武湖导游词
2015/02/05 职场文书
小王子读书笔记
2015/06/29 职场文书
茶花女读书笔记
2015/06/29 职场文书
Nginx的rewrite模块详解
2021/03/31 Servers
Python中threading库实现线程锁与释放锁
2021/05/17 Python
TV动画《八十龟酱观察日记》第四季宣传PV公布
2022/04/06 日漫