Pytorch上下采样函数--interpolate用法


Posted in Python onJuly 07, 2020

最近用到了上采样下采样操作,pytorch中使用interpolate可以很轻松的完成

def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
  r"""
  根据给定 size 或 scale_factor,上采样或下采样输入数据input.
  
  当前支持 temporal, spatial 和 volumetric 输入数据的上采样,其shape 分别为:3-D, 4-D 和 5-D.
  输入数据的形式为:mini-batch x channels x [optional depth] x [optional height] x width.

  上采样算法有:nearest, linear(3D-only), bilinear(4D-only), trilinear(5D-only).
  
  参数:
  - input (Tensor): input tensor
  - size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):输出的 spatial 尺寸.
  - scale_factor (float or Tuple[float]): spatial 尺寸的缩放因子.
  - mode (string): 上采样算法:nearest, linear, bilinear, trilinear, area. 默认为 nearest.
  - align_corners (bool, optional): 如果 align_corners=True,则对齐 input 和 output 的角点像素(corner pixels),保持在角点像素的值. 只会对 mode=linear, bilinear 和 trilinear 有作用. 默认是 False.
  """
  from numbers import Integral
  from .modules.utils import _ntuple

  def _check_size_scale_factor(dim):
    if size is None and scale_factor is None:
      raise ValueError('either size or scale_factor should be defined')
    if size is not None and scale_factor is not None:
      raise ValueError('only one of size or scale_factor should be defined')
    if scale_factor is not None and isinstance(scale_factor, tuple)\
        and len(scale_factor) != dim:
      raise ValueError('scale_factor shape must match input shape. '
               'Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor)))

  def _output_size(dim):
    _check_size_scale_factor(dim)
    if size is not None:
      return size
    scale_factors = _ntuple(dim)(scale_factor)
    # math.floor might return float in py2.7
    return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)]

  if mode in ('nearest', 'area'):
    if align_corners is not None:
      raise ValueError("align_corners option can only be set with the "
               "interpolating modes: linear | bilinear | trilinear")
  else:
    if align_corners is None:
      warnings.warn("Default upsampling behavior when mode={} is changed "
             "to align_corners=False since 0.4.0. Please specify "
             "align_corners=True if the old behavior is desired. "
             "See the documentation of nn.Upsample for details.".format(mode))
      align_corners = False

  if input.dim() == 3 and mode == 'nearest':
    return torch._C._nn.upsample_nearest1d(input, _output_size(1))
  elif input.dim() == 4 and mode == 'nearest':
    return torch._C._nn.upsample_nearest2d(input, _output_size(2))
  elif input.dim() == 5 and mode == 'nearest':
    return torch._C._nn.upsample_nearest3d(input, _output_size(3))
  elif input.dim() == 3 and mode == 'area':
    return adaptive_avg_pool1d(input, _output_size(1))
  elif input.dim() == 4 and mode == 'area':
    return adaptive_avg_pool2d(input, _output_size(2))
  elif input.dim() == 5 and mode == 'area':
    return adaptive_avg_pool3d(input, _output_size(3))
  elif input.dim() == 3 and mode == 'linear':
    return torch._C._nn.upsample_linear1d(input, _output_size(1), align_corners)
  elif input.dim() == 3 and mode == 'bilinear':
    raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
  elif input.dim() == 3 and mode == 'trilinear':
    raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
  elif input.dim() == 4 and mode == 'linear':
    raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
  elif input.dim() == 4 and mode == 'bilinear':
    return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners)
  elif input.dim() == 4 and mode == 'trilinear':
    raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
  elif input.dim() == 5 and mode == 'linear':
    raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
  elif input.dim() == 5 and mode == 'bilinear':
    raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
  elif input.dim() == 5 and mode == 'trilinear':
    return torch._C._nn.upsample_trilinear3d(input, _output_size(3), align_corners)
  else:
    raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
                 " (got {}D) for the modes: nearest | linear | bilinear | trilinear"
                 " (got {})".format(input.dim(), mode))

举个例子:

x = Variable(torch.randn([1, 3, 64, 64]))
y0 = F.interpolate(x, scale_factor=0.5)
y1 = F.interpolate(x, size=[32, 32])

y2 = F.interpolate(x, size=[128, 128], mode="bilinear")

print(y0.shape)
print(y1.shape)
print(y2.shape)

这里注意上采样的时候mode默认是“nearest”,这里指定双线性插值“bilinear”

得到结果

torch.Size([1, 3, 32, 32])
torch.Size([1, 3, 32, 32])
torch.Size([1, 3, 128, 128])

补充知识:pytorch插值函数interpolate——图像上采样-下采样,scipy插值函数zoom

在训练过程中,需要对图像数据进行插值,如果此时数据是numpy数据,那么可以使用scipy中的zoom函数:

from scipy.ndimage.interpolation import zoom

def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0,
     prefilter=True):
  """
  Zoom an array.
  The array is zoomed using spline interpolation of the requested order.
  Parameters
  ----------
  %(input)s
  zoom : float or sequence
    The zoom factor along the axes. If a float, `zoom` is the same for each
    axis. If a sequence, `zoom` should contain one value for each axis.
  %(output)s
  order : int, optional
    The order of the spline interpolation, default is 3.
    The order has to be in the range 0-5.
  %(mode)s
  %(cval)s
  %(prefilter)s
  Returns
  -------
  zoom : ndarray
    The zoomed input.
  Examples
  --------
  >>> from scipy import ndimage, misc
  >>> import matplotlib.pyplot as plt
  >>> fig = plt.figure()
  >>> ax1 = fig.add_subplot(121) # left side
  >>> ax2 = fig.add_subplot(122) # right side
  >>> ascent = misc.ascent()
  >>> result = ndimage.zoom(ascent, 3.0)
  >>> ax1.imshow(ascent)
  >>> ax2.imshow(result)
  >>> plt.show()
  >>> print(ascent.shape)
  (512, 512)
  >>> print(result.shape)
  (1536, 1536)
  """
  if order < 0 or order > 5:
    raise RuntimeError('spline order not supported')
  input = numpy.asarray(input)
  if numpy.iscomplexobj(input):
    raise TypeError('Complex type not supported')
  if input.ndim < 1:
    raise RuntimeError('input and output rank must be > 0')
  mode = _ni_support._extend_mode_to_code(mode)
  if prefilter and order > 1:
    filtered = spline_filter(input, order, output=numpy.float64)
  else:
    filtered = input
  zoom = _ni_support._normalize_sequence(zoom, input.ndim)
  output_shape = tuple(
      [int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)])
 
  output_shape_old = tuple(
      [int(ii * jj) for ii, jj in zip(input.shape, zoom)])
  if output_shape != output_shape_old:
    warnings.warn(
        "From scipy 0.13.0, the output shape of zoom() is calculated "
        "with round() instead of int() - for these inputs the size of "
        "the returned array has changed.", UserWarning)
 
  zoom_div = numpy.array(output_shape, float) - 1
  # Zooming to infinite values is unpredictable, so just choose
  # zoom factor 1 instead
  zoom = numpy.divide(numpy.array(input.shape) - 1, zoom_div,
            out=numpy.ones_like(input.shape, dtype=numpy.float64),
            where=zoom_div != 0)
 
  output = _ni_support._get_output(output, input,
                          shape=output_shape)
  zoom = numpy.ascontiguousarray(zoom)
  _nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval)
  return output

中的zoom函数进行插值,

但是,如果此时的数据是tensor(张量)的时候,使用zoom函数的时候需要将tensor数据转为numpy,将GPU数据转换为CPU数据等,过程比较繁琐,可以使用pytorch自带的函数进行插值操作,interpolate函数有几个参数:size表示输出大小,scale_factor表示缩放倍数,mode表示插值方式,align_corners是bool类型,表示输入和输出中心是否对齐:

from torch.nn.functional import interpolate

def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
  r"""Down/up samples the input to either the given :attr:`size` or the given
  :attr:`scale_factor`
  The algorithm used for interpolation is determined by :attr:`mode`.
  Currently temporal, spatial and volumetric sampling are supported, i.e.
  expected inputs are 3-D, 4-D or 5-D in shape.
  The input dimensions are interpreted in the form:
  `mini-batch x channels x [optional depth] x [optional height] x width`.
  The modes available for resizing are: `nearest`, `linear` (3D-only),
  `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`
  Args:
    input (Tensor): the input tensor
    size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
      output spatial size.
    scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
    mode (str): algorithm used for upsampling:
      ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
      ``'trilinear'`` | ``'area'``. Default: ``'nearest'``
    align_corners (bool, optional): Geometrically, we consider the pixels of the
      input and output as squares rather than points.
      If set to ``True``, the input and output tensors are aligned by the
      center points of their corner pixels. If set to ``False``, the input and
      output tensors are aligned by the corner points of their corner
      pixels, and the interpolation uses edge value padding for out-of-boundary values.
      This only has effect when :attr:`mode` is ``'linear'``,
      ``'bilinear'``, ``'bicubic'``, or ``'trilinear'``.
      Default: ``False``
  .. warning::
    With ``align_corners = True``, the linearly interpolating modes
    (`linear`, `bilinear`, and `trilinear`) don't proportionally align the
    output and input pixels, and thus the output values can depend on the
    input size. This was the default behavior for these modes up to version
    0.3.1. Since then, the default behavior is ``align_corners = False``.
    See :class:`~torch.nn.Upsample` for concrete examples on how this
    affects the outputs.
  .. include:: cuda_deterministic_backward.rst
  """
  from .modules.utils import _ntuple
 
  def _check_size_scale_factor(dim):
    if size is None and scale_factor is None:
      raise ValueError('either size or scale_factor should be defined')
    if size is not None and scale_factor is not None:
      raise ValueError('only one of size or scale_factor should be defined')
    if scale_factor is not None and isinstance(scale_factor, tuple)\
        and len(scale_factor) != dim:
      raise ValueError('scale_factor shape must match input shape. '
               'Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor)))
 
  def _output_size(dim):
    _check_size_scale_factor(dim)
    if size is not None:
      return size
    scale_factors = _ntuple(dim)(scale_factor)
    # math.floor might return float in py2.7
 
    # make scale_factor a tensor in tracing so constant doesn't get baked in
    if torch._C._get_tracing_state():
      return [(torch.floor(input.size(i + 2) * torch.tensor(float(scale_factors[i])))) for i in range(dim)]
    else:
      return [int(math.floor(int(input.size(i + 2)) * scale_factors[i])) for i in range(dim)]
 
  if mode in ('nearest', 'area'):
    if align_corners is not None:
      raise ValueError("align_corners option can only be set with the "
               "interpolating modes: linear | bilinear | bicubic | trilinear")
  else:
    if align_corners is None:
      warnings.warn("Default upsampling behavior when mode={} is changed "
             "to align_corners=False since 0.4.0. Please specify "
             "align_corners=True if the old behavior is desired. "
             "See the documentation of nn.Upsample for details.".format(mode))
      align_corners = False
 
  if input.dim() == 3 and mode == 'nearest':
    return torch._C._nn.upsample_nearest1d(input, _output_size(1))
  elif input.dim() == 4 and mode == 'nearest':
    return torch._C._nn.upsample_nearest2d(input, _output_size(2))
  elif input.dim() == 5 and mode == 'nearest':
    return torch._C._nn.upsample_nearest3d(input, _output_size(3))
  elif input.dim() == 3 and mode == 'area':
    return adaptive_avg_pool1d(input, _output_size(1))
  elif input.dim() == 4 and mode == 'area':
    return adaptive_avg_pool2d(input, _output_size(2))
  elif input.dim() == 5 and mode == 'area':
    return adaptive_avg_pool3d(input, _output_size(3))
  elif input.dim() == 3 and mode == 'linear':
    return torch._C._nn.upsample_linear1d(input, _output_size(1), align_corners)
  elif input.dim() == 3 and mode == 'bilinear':
    raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
  elif input.dim() == 3 and mode == 'trilinear':
    raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
  elif input.dim() == 4 and mode == 'linear':
    raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
  elif input.dim() == 4 and mode == 'bilinear':
    return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners)
  elif input.dim() == 4 and mode == 'trilinear':
    raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
  elif input.dim() == 5 and mode == 'linear':
    raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
  elif input.dim() == 5 and mode == 'bilinear':
    raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
  elif input.dim() == 5 and mode == 'trilinear':
    return torch._C._nn.upsample_trilinear3d(input, _output_size(3), align_corners)
  elif input.dim() == 4 and mode == 'bicubic':
    return torch._C._nn.upsample_bicubic2d(input, _output_size(2), align_corners)
  else:
    raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
                 " (got {}D) for the modes: nearest | linear | bilinear | bicubic | trilinear"
                 " (got {})".format(input.dim(), mode))

以上这篇Pytorch上下采样函数--interpolate用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中实现远程调用(RPC、RMI)简单例子
Apr 28 Python
Python中为feedparser设置超时时间避免堵塞
Sep 28 Python
Python读写ini文件的方法
May 28 Python
Python解析最简单的验证码
Jan 07 Python
Python中多个数组行合并及列合并的方法总结
Apr 12 Python
python3中函数参数的四种简单用法
Jul 09 Python
python利用Tesseract识别验证码的方法示例
Jan 21 Python
MATLAB数学建模之画图汇总
Jul 16 Python
五分钟带你搞懂python 迭代器与生成器
Aug 30 Python
python使用selenium爬虫知乎的方法示例
Oct 28 Python
Python绘制地图神器folium的新人入门指南
May 23 Python
Python爬虫框架之Scrapy中Spider的用法
Jun 28 Python
pytorch随机采样操作SubsetRandomSampler()
Jul 07 #Python
pytorch加载自己的图像数据集实例
Jul 07 #Python
keras实现VGG16 CIFAR10数据集方式
Jul 07 #Python
使用darknet框架的imagenet数据分类预训练操作
Jul 07 #Python
Python调用C语言程序方法解析
Jul 07 #Python
keras实现VGG16方式(预测一张图片)
Jul 07 #Python
通过实例解析Python RPC实现原理及方法
Jul 07 #Python
You might like
PHP 变量的定义方法
2010/01/26 PHP
php写的带缓存数据功能的mysqli类
2012/09/06 PHP
PHP图片处理之使用imagecopyresampled函数裁剪图片例子
2014/11/19 PHP
浅谈PHP链表数据结构(单链表)
2016/06/08 PHP
PHP连接MySQL数据库并以json格式输出
2018/05/21 PHP
解决FLASH需要点击激活的代码
2006/12/20 Javascript
服务器安全设置的几个注册表设置
2007/07/28 Javascript
js中各浏览器中鼠标按键值的差异
2011/04/07 Javascript
详解js闭包
2014/09/02 Javascript
JavaScript利用HTML DOM进行文档操作的方法
2016/03/28 Javascript
Bootstrap前端开发案例二
2016/06/17 Javascript
AngularJS中$watch和$timeout的使用示例
2016/09/20 Javascript
jQuery插件zTree实现获取当前选中节点在同级节点中序号的方法
2017/03/08 Javascript
vue学习笔记之vue1.0和vue2.0的区别介绍
2017/05/17 Javascript
vue2单元测试环境搭建
2018/05/24 Javascript
vue学习笔记五:在vue项目里面使用引入公共方法详解
2019/04/04 Javascript
JS隐藏号码中间4位代码实例
2019/04/09 Javascript
Vue + Element UI图片上传控件使用详解
2019/08/20 Javascript
在vue中使用axios实现post方式获取二进制流下载文件(实例代码)
2019/12/16 Javascript
js+css实现扇形导航效果
2020/08/18 Javascript
[06:44]2014DOTA2国际邀请赛-钥匙体育馆开战 开幕式振奋人心
2014/07/19 DOTA
利用python爬取散文网的文章实例教程
2017/06/18 Python
Python+Socket实现基于UDP协议的局域网广播功能示例
2017/08/31 Python
python实现对求解最长回文子串的动态规划算法
2018/06/02 Python
Python使用gRPC传输协议教程
2018/10/16 Python
python中ImageTk.PhotoImage()不显示图片却不报错问题解决
2018/12/06 Python
python制作简单五子棋游戏
2019/06/18 Python
Python交互式图形编程的实现
2019/07/25 Python
python梯度下降算法的实现
2020/02/24 Python
PyCharm GUI界面开发和exe文件生成的实现
2020/03/04 Python
纯css3使用vw和vh实现自适应的方法
2018/02/09 HTML / CSS
.net笔试题
2014/03/03 面试题
见习期自我鉴定
2013/11/07 职场文书
《雨霖铃》听课反思
2014/02/13 职场文书
培训科主任岗位职责
2014/08/08 职场文书
家属慰问信
2015/02/14 职场文书