Python pandas RFM模型应用实例详解


Posted in Python onNovember 20, 2019

本文实例讲述了Python pandas RFM模型应用。分享给大家供大家参考,具体如下:

什么是RFM模型

根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标:

  • 最近一次消费 (Recency): 客户最近一次交易时间的间隔。R值越大,表示客户交易距今越久,反之则越近;
  • 消费频率 (Frequency): 客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则不够活跃;
  • 消费金额 (Monetary): 客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则越低。

RFM实践应用

1、前提假设验证

RFM模型的应用是有前提假设的,即R、F、M值越大价值越大,客户未来的为企业带来的价值越大。这个前提假

设其实已经经过大量的研究和实证,假设是成立的。不过为了更加严谨,确保RFM模型对于特殊案例是有效的,

本文还进行了前提假设验证:

ps:Frequency、Monetary均为近6个月内的数据,即1-6月数据;

利用相关性检验,验证假设:

  • 最近购买产品的用户更容易产生下一次消费行为
  • 消费频次高的用户,用户满意度高,忠诚度高,更容易产生下一次消费行为
  • 消费金额高的用户更容易带来高消费行为

2、RFM分级

简单的做法,RFM三个指标以均值来划分,高于均值的为高价值、低于均值的为低价值,如此可以将客户划分为8大类:

Python pandas RFM模型应用实例详解

本文采取的方法是将三个指标进行标准化,然后按照分为数划分为5个等级,数值越大代表价值越高;当然最终划分的规则还是要结合业务来定。划分为5个等级后,客户可以细分为125种。

#读取数据
rfm<-read.csv('~/desktop/rfm1_7.csv',header=TRUE)
summary(rfm)
#数据分布
par(mfrow=c(1,3))
boxplot(rfm$rankR1) 
boxplot(rfm$rankF1) 
boxplot(rfm$rankM1)
#rfm分级
breaks1<-quantile(rfm$Recency, probs = seq(0, 1, 0.2),names = FALSE)
breaks1<-c(1,14,30,57,111,181) #以流失用户的定义来设置分级 30天以上为流失用户
breaks2<-quantile(rfm$Frequency, probs = seq(0, 1, 0.2),names = FALSE)
breaks2<-c(1,2,3,6,14,164) 
breaks3<-quantile(rfm$Monetary, probs = seq(0, 1, 0.2),names = FALSE)
rfm$rankR1<- cut(rfm$Recency,breaks1, 5,labels=F)
rfm$rankR1<- 6-rfm$rankR1
rfm$rankF1<- cut(rfm$Frequency,breaks2, 5,labels=F)
rfm$rankM1<- cut(rfm$Monetary,breaks3, 5,labels=F)

3、客户分类

本文采用K-means聚类进行分类,聚类结果结合业务划分为4大类:

  • Cluster1:价值用户R、F、M三项指标均较高;
  • Cluster2,3:用户贡献值最低,且用户近度(小于2)和频度较低,为无价值客户;
  • Cluster4:发展用户,用户频度和值度较低,但用户近度较高,可做up营销;
  • Cluster5:挽留客户,用户近度较低,但频度和值度较高,需采用挽留手段

k值选择:

Python pandas RFM模型应用实例详解

聚类结果:

Python pandas RFM模型应用实例详解

#聚类
df<-rfm[,c(6,7,8)]
p1<-fviz_nbclust(df, kmeans, method = "wss")
p2<-p1 + geom_vline(xintercept = 5, linetype = 2)
km_result <- kmeans(df, 5)
dd <- cbind(rfm,df, cluster = km_result$cluster)
##查看每一类的数目
table(dd$cluster)
picture<-fviz_cluster(km_result, df, geom = "point")
####聚类结果解释####
rfm_final <- within(dd,{Custom = NA
Custom[cluster == 1] = '高价值客户' 
Custom[cluster == 2 ] = '无价值客户' 
Custom[ cluster == 3] = '无价值客户' 
Custom[cluster == 4] = '重点发展客户'  
Custom[cluster == 5] = '重点挽留客户' 
})

4、RFM打分

步骤3,我们将客户划分为四大类,其实如果一类客户中还有大量的客户,此时为了精细化营销,可以根据RFM进行加权打分,给出一个综合价值的分。这里,运用AHP层次分析法确定RFM各指标权重:

客户价值RFM_SCORE= 0.25rankR + 0.20rankF+0.55*rankM

AHP层次分析法(专家打分法)

Python pandas RFM模型应用实例详解

总结

上述客户分类其实比较粗旷,真正在面对千万级客户量时,如此划分为四大类是难以满足运营需求的。运营中,还需要综合CRM中其他指标、维度。

ps:后续作者利用RFM客户价值得分进行潜在客户挖掘,尝试利用决策树等模型挖掘平台潜在客户特征。

简单实例

import pandas as pd
import numpy as np
import time
#todo 读取数据
data = pd.read_csv('RFM_TRAD_FLOW.csv',encoding='gbk')
# print(ret)
# todo RFM------>R(最近一次消费)
#todo 时间与字符串相互转换
data['time'] = data['time'].map(lambda x:time.mktime(time.strptime(x,'%d%b%y:%H:%M:%S')))
# print(data)
# todo 分组
groupby_obj = data.groupby(['cumid','type'])
# for name,data in groupby_obj:
#   print(name)
#   print(data)
# todo 取值
R = groupby_obj[['time']].max()
# print(
# todo 转为透视表
r_trans = pd.pivot_table(R,index='cumid',columns='type',values='time')
# print(data_trans)
# todo 替换缺失值 有缺失值,替换成最远的值
r_trans[['Special_offer','returned_goods']] = r_trans[['Special_offer','returned_goods']].apply(lambda x:x.replace(np.nan,min(x)),axis = 0)
# print(data_trans)
r_trans['r_max'] = r_trans.apply(lambda x:sum(x),axis=1)
# print(r_trans)
# todo RFM------>F(消费频率)
# 取值
F =groupby_obj[['transID']].count()
# print(F)
#转为透视表
f_trans = pd.pivot_table(F,index='cumid',columns='type',values='transID')
# print(f_trans)
#替换缺失值
f_trans[['Special_offer','returned_goods']]= f_trans[['Special_offer','returned_goods']].fillna(0)
# print(f_trans)
#
f_trans['returned_goods'] = f_trans['returned_goods'].map(lambda x:-x)
# print(f_trans)
f_trans['f_total'] = f_trans.apply(lambda x:sum(x),axis=1)
# print(f_trans)
# todo RFM------>M(消费金额)
# 取值
M =groupby_obj[['amount']].sum()
# print(M)
#转为透视表
m_trans = pd.pivot_table(M,index='cumid',columns='type',values='amount')
# print(f_trans)
#替换缺失值
m_trans[['Special_offer','returned_goods']]= m_trans[['Special_offer','returned_goods']].fillna(0)
# print(f_trans)
#
m_trans['m_total'] = m_trans.apply(lambda x:sum(x),axis=1)
# print(m_trans)
# 合并
RFM=pd.concat([r_trans["r_max"],f_trans['f_total'],m_trans['m_total']],axis=1)
print(RFM)
r_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
f_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
m_score = pd.cut(RFM.r_max,3,labels=[0,1,2])

关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python实现的生成随机迷宫算法核心代码分享(含游戏完整代码)
Jul 11 Python
python打开url并按指定块读取网页内容的方法
Apr 29 Python
Python 字符串大小写转换的简单实例
Jan 21 Python
python 爬虫出现403禁止访问错误详解
Mar 11 Python
Python算法之求n个节点不同二叉树个数
Oct 27 Python
如何在Django中添加没有微秒的 DateTimeField 属性详解
Jan 30 Python
Django实现简单网页弹出警告代码
Nov 15 Python
Pytorch evaluation每次运行结果不同的解决
Jan 02 Python
Python 多线程共享变量的实现示例
Apr 17 Python
Keras 实现加载预训练模型并冻结网络的层
Jun 15 Python
浅谈python处理json和redis hash的坑
Jul 16 Python
Python OpenCV之常用滤波器使用详解
Apr 07 Python
使用Python实现正态分布、正态分布采样
Nov 20 #Python
Python pandas自定义函数的使用方法示例
Nov 20 #Python
Python求正态分布曲线下面积实例
Nov 20 #Python
复化梯形求积分实例——用Python进行数值计算
Nov 20 #Python
Python实现数值积分方式
Nov 20 #Python
基于Python批量生成指定尺寸缩略图代码实例
Nov 20 #Python
python用quad、dblquad实现一维二维积分的实例详解
Nov 20 #Python
You might like
php表单提交问题的解决方法
2011/04/12 PHP
浅谈php中urlencode与rawurlencode的区别
2016/09/05 PHP
js Date自定义函数 延迟脚本执行
2010/03/10 Javascript
JavaScript 对象模型 执行模型
2010/10/15 Javascript
jquery select(列表)的操作(取值/赋值)
2011/03/16 Javascript
在页面上用action传递参数到后台出现乱码的解决方法
2013/12/31 Javascript
JavaScript删除数组元素的方法
2015/03/20 Javascript
javascript实现捕捉键盘上按下的键
2015/05/05 Javascript
微信企业号开发之微信考勤百度地图定位
2015/09/11 Javascript
基于javascript实现浏览器滚动条快到底部时自动加载数据
2015/11/30 Javascript
javascript从作用域链谈闭包
2020/07/29 Javascript
JavaScript中的原型继承基础学习教程
2016/05/06 Javascript
jQuery过滤特殊字符及JS字符串转为数字
2016/05/26 Javascript
BootStrap Validator 版本差异问题导致的submitHandler失效问题的解决方法
2016/12/01 Javascript
jquery精度计算代码 jquery指定精确小数位
2017/02/06 Javascript
jQuery插件HighCharts绘制2D圆环图效果示例【附demo源码下载】
2017/03/09 Javascript
JS实现动态添加DOM节点和事件的方法示例
2017/04/28 Javascript
微信小程序如何获知用户运行小程序的场景教程
2017/05/17 Javascript
jQueryMobile之窗体长内容的缺陷与解决方法实例分析
2017/09/20 jQuery
react native 获取地理位置的方法示例
2018/08/28 Javascript
记一次vue-webpack项目优化实践详解
2019/02/17 Javascript
js中的面向对象之对象常见创建方法详解
2019/12/16 Javascript
Python使用Scrapy爬取妹子图
2015/05/28 Python
Python时间和字符串转换操作实例分析
2019/03/16 Python
Anaconda3+tensorflow2.0.0+PyCharm安装与环境搭建(图文)
2020/02/18 Python
python Yaml、Json、Dict之间的转化
2020/10/19 Python
利用纯CSS3实现文字向右循环闪过效果实例(可用于移动端)
2017/06/15 HTML / CSS
CSS3制作彩色进度条样式的代码示例分享
2016/06/23 HTML / CSS
兰蔻美国官网:Lancome美国
2017/04/25 全球购物
C/C++有关内存的思考题
2015/12/04 面试题
销售业务实习自我鉴定
2013/09/23 职场文书
毕业生的自我评价
2013/12/30 职场文书
自我介绍演讲稿
2014/01/15 职场文书
考试没考好检讨书(精选篇)
2014/11/16 职场文书
讲座新闻稿
2015/07/18 职场文书
2016年社区创先争优活动总结
2016/04/05 职场文书