Python pandas RFM模型应用实例详解


Posted in Python onNovember 20, 2019

本文实例讲述了Python pandas RFM模型应用。分享给大家供大家参考,具体如下:

什么是RFM模型

根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标:

  • 最近一次消费 (Recency): 客户最近一次交易时间的间隔。R值越大,表示客户交易距今越久,反之则越近;
  • 消费频率 (Frequency): 客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则不够活跃;
  • 消费金额 (Monetary): 客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则越低。

RFM实践应用

1、前提假设验证

RFM模型的应用是有前提假设的,即R、F、M值越大价值越大,客户未来的为企业带来的价值越大。这个前提假

设其实已经经过大量的研究和实证,假设是成立的。不过为了更加严谨,确保RFM模型对于特殊案例是有效的,

本文还进行了前提假设验证:

ps:Frequency、Monetary均为近6个月内的数据,即1-6月数据;

利用相关性检验,验证假设:

  • 最近购买产品的用户更容易产生下一次消费行为
  • 消费频次高的用户,用户满意度高,忠诚度高,更容易产生下一次消费行为
  • 消费金额高的用户更容易带来高消费行为

2、RFM分级

简单的做法,RFM三个指标以均值来划分,高于均值的为高价值、低于均值的为低价值,如此可以将客户划分为8大类:

Python pandas RFM模型应用实例详解

本文采取的方法是将三个指标进行标准化,然后按照分为数划分为5个等级,数值越大代表价值越高;当然最终划分的规则还是要结合业务来定。划分为5个等级后,客户可以细分为125种。

#读取数据
rfm<-read.csv('~/desktop/rfm1_7.csv',header=TRUE)
summary(rfm)
#数据分布
par(mfrow=c(1,3))
boxplot(rfm$rankR1) 
boxplot(rfm$rankF1) 
boxplot(rfm$rankM1)
#rfm分级
breaks1<-quantile(rfm$Recency, probs = seq(0, 1, 0.2),names = FALSE)
breaks1<-c(1,14,30,57,111,181) #以流失用户的定义来设置分级 30天以上为流失用户
breaks2<-quantile(rfm$Frequency, probs = seq(0, 1, 0.2),names = FALSE)
breaks2<-c(1,2,3,6,14,164) 
breaks3<-quantile(rfm$Monetary, probs = seq(0, 1, 0.2),names = FALSE)
rfm$rankR1<- cut(rfm$Recency,breaks1, 5,labels=F)
rfm$rankR1<- 6-rfm$rankR1
rfm$rankF1<- cut(rfm$Frequency,breaks2, 5,labels=F)
rfm$rankM1<- cut(rfm$Monetary,breaks3, 5,labels=F)

3、客户分类

本文采用K-means聚类进行分类,聚类结果结合业务划分为4大类:

  • Cluster1:价值用户R、F、M三项指标均较高;
  • Cluster2,3:用户贡献值最低,且用户近度(小于2)和频度较低,为无价值客户;
  • Cluster4:发展用户,用户频度和值度较低,但用户近度较高,可做up营销;
  • Cluster5:挽留客户,用户近度较低,但频度和值度较高,需采用挽留手段

k值选择:

Python pandas RFM模型应用实例详解

聚类结果:

Python pandas RFM模型应用实例详解

#聚类
df<-rfm[,c(6,7,8)]
p1<-fviz_nbclust(df, kmeans, method = "wss")
p2<-p1 + geom_vline(xintercept = 5, linetype = 2)
km_result <- kmeans(df, 5)
dd <- cbind(rfm,df, cluster = km_result$cluster)
##查看每一类的数目
table(dd$cluster)
picture<-fviz_cluster(km_result, df, geom = "point")
####聚类结果解释####
rfm_final <- within(dd,{Custom = NA
Custom[cluster == 1] = '高价值客户' 
Custom[cluster == 2 ] = '无价值客户' 
Custom[ cluster == 3] = '无价值客户' 
Custom[cluster == 4] = '重点发展客户'  
Custom[cluster == 5] = '重点挽留客户' 
})

4、RFM打分

步骤3,我们将客户划分为四大类,其实如果一类客户中还有大量的客户,此时为了精细化营销,可以根据RFM进行加权打分,给出一个综合价值的分。这里,运用AHP层次分析法确定RFM各指标权重:

客户价值RFM_SCORE= 0.25rankR + 0.20rankF+0.55*rankM

AHP层次分析法(专家打分法)

Python pandas RFM模型应用实例详解

总结

上述客户分类其实比较粗旷,真正在面对千万级客户量时,如此划分为四大类是难以满足运营需求的。运营中,还需要综合CRM中其他指标、维度。

ps:后续作者利用RFM客户价值得分进行潜在客户挖掘,尝试利用决策树等模型挖掘平台潜在客户特征。

简单实例

import pandas as pd
import numpy as np
import time
#todo 读取数据
data = pd.read_csv('RFM_TRAD_FLOW.csv',encoding='gbk')
# print(ret)
# todo RFM------>R(最近一次消费)
#todo 时间与字符串相互转换
data['time'] = data['time'].map(lambda x:time.mktime(time.strptime(x,'%d%b%y:%H:%M:%S')))
# print(data)
# todo 分组
groupby_obj = data.groupby(['cumid','type'])
# for name,data in groupby_obj:
#   print(name)
#   print(data)
# todo 取值
R = groupby_obj[['time']].max()
# print(
# todo 转为透视表
r_trans = pd.pivot_table(R,index='cumid',columns='type',values='time')
# print(data_trans)
# todo 替换缺失值 有缺失值,替换成最远的值
r_trans[['Special_offer','returned_goods']] = r_trans[['Special_offer','returned_goods']].apply(lambda x:x.replace(np.nan,min(x)),axis = 0)
# print(data_trans)
r_trans['r_max'] = r_trans.apply(lambda x:sum(x),axis=1)
# print(r_trans)
# todo RFM------>F(消费频率)
# 取值
F =groupby_obj[['transID']].count()
# print(F)
#转为透视表
f_trans = pd.pivot_table(F,index='cumid',columns='type',values='transID')
# print(f_trans)
#替换缺失值
f_trans[['Special_offer','returned_goods']]= f_trans[['Special_offer','returned_goods']].fillna(0)
# print(f_trans)
#
f_trans['returned_goods'] = f_trans['returned_goods'].map(lambda x:-x)
# print(f_trans)
f_trans['f_total'] = f_trans.apply(lambda x:sum(x),axis=1)
# print(f_trans)
# todo RFM------>M(消费金额)
# 取值
M =groupby_obj[['amount']].sum()
# print(M)
#转为透视表
m_trans = pd.pivot_table(M,index='cumid',columns='type',values='amount')
# print(f_trans)
#替换缺失值
m_trans[['Special_offer','returned_goods']]= m_trans[['Special_offer','returned_goods']].fillna(0)
# print(f_trans)
#
m_trans['m_total'] = m_trans.apply(lambda x:sum(x),axis=1)
# print(m_trans)
# 合并
RFM=pd.concat([r_trans["r_max"],f_trans['f_total'],m_trans['m_total']],axis=1)
print(RFM)
r_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
f_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
m_score = pd.cut(RFM.r_max,3,labels=[0,1,2])

关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
用Python的urllib库提交WEB表单
Feb 24 Python
Python常见文件操作的函数示例代码
Nov 15 Python
python 剪切移动文件的实现代码
Aug 02 Python
Python 将Matrix、Dict保存到文件的方法
Oct 30 Python
python中for循环输出列表索引与对应的值方法
Nov 07 Python
Python 实现判断图片格式并转换,将转换的图像存到生成的文件夹中
Jan 13 Python
Python语法之精妙的十个知识点(装B语法)
Jan 18 Python
python爬虫可以爬什么
Jun 16 Python
Python3如何在服务器打印资产信息
Aug 27 Python
10个python爬虫入门实例(小结)
Nov 01 Python
详解python的内存分配机制
May 10 Python
python开发的自动化运维工具ansible详解
Aug 07 Python
使用Python实现正态分布、正态分布采样
Nov 20 #Python
Python pandas自定义函数的使用方法示例
Nov 20 #Python
Python求正态分布曲线下面积实例
Nov 20 #Python
复化梯形求积分实例——用Python进行数值计算
Nov 20 #Python
Python实现数值积分方式
Nov 20 #Python
基于Python批量生成指定尺寸缩略图代码实例
Nov 20 #Python
python用quad、dblquad实现一维二维积分的实例详解
Nov 20 #Python
You might like
实现PHP+Mysql无限分类的方法汇总
2015/03/02 PHP
php使用Jpgraph绘制简单X-Y坐标图的方法
2015/06/10 PHP
PHP下载大文件失败并限制下载速度的实例代码
2019/05/10 PHP
PHP常用字符串函数用法实例总结
2020/06/04 PHP
一个可以显示阴历的JS代码
2007/03/05 Javascript
JS Range HTML文档/文字内容选中、库及应用介绍
2011/05/12 Javascript
浅析2种JavaScript继承方式
2015/12/04 Javascript
js实现网页图片延时加载 提升网页打开速度
2016/01/26 Javascript
基于jQuery实现图片推拉门动画效果的两种方法
2017/08/26 jQuery
基于IView中on-change属性的使用详解
2018/03/15 Javascript
jQuery实现的别踩白块小游戏完整示例
2019/01/07 jQuery
js常见遍历操作小结
2019/06/06 Javascript
微信小程序 高德地图路线规划实现过程详解
2019/08/05 Javascript
JS轮播图的实现方法2
2020/08/25 Javascript
使用Python脚本将文字转换为图片的实例分享
2015/08/29 Python
Python的re模块正则表达式操作
2016/05/25 Python
python中的json总结
2018/10/11 Python
对python以16进制打印字节数组的方法详解
2019/01/24 Python
Python线程之定位与销毁的实现
2019/02/17 Python
python调用外部程序的实操步骤
2019/03/04 Python
在python plt图表中文字大小调节的方法
2019/07/08 Python
python入门之基础语法学习笔记
2020/02/08 Python
python 删除系统中的文件(按时间,大小,扩展名)
2020/11/19 Python
Maisons du Monde德国:法国家具和装饰的市场领导者
2019/07/26 全球购物
adidas泰国官网:adidas TH
2020/07/11 全球购物
毕业生大学生活自我总结
2014/01/31 职场文书
阿德的梦教学反思
2014/02/06 职场文书
无犯罪记录证明范本
2014/09/15 职场文书
2014员工聘用协议书(最新版)
2014/11/24 职场文书
2015年党员个人剖析材料
2014/12/18 职场文书
淘宝客服专员岗位职责
2015/04/07 职场文书
工地食品安全责任书
2015/05/09 职场文书
公司保洁员管理制度
2015/08/04 职场文书
高一英语教学反思
2016/03/03 职场文书
Vue接口封装的完整步骤记录
2021/05/14 Vue.js
SQL Server表分区降低运维和维护成本
2022/04/08 SQL Server