Python K最近邻从原理到实现的方法


Posted in Python onAugust 15, 2019

本来这篇文章是5月份写的,今天修改了一下内容,就成今天发表的了,CSDN这是出BUG了还是什么改规则了。。。

引文:决策树和基于规则的分类器都是积极学习方法(eager learner)的例子,因为一旦训练数据可用,他们就开始学习从输入属性到类标号的映射模型。一个相反的策略是推迟对训练数据的建模,直到需要分类测试样例时再进行。采用这种策略的技术被称为消极学习法(lazy learner)。最近邻分类器就是这样的一种方法。

注:KNN既可以用于分类,也可以用于回归。

1.K最近邻分类器原理

首先给出一张图,根据这张图来理解最近邻分类器,如下:

Python K最近邻从原理到实现的方法

根据上图所示,有两类不同的样本数据,分别用蓝色的小正方形红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。

我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他or她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:

  • 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
  • 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。其关键还在于K值的选取,所以应当谨慎。

KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。

前面的例子中强调了选择合适的K值的重要性。如果太小,则最近邻分类器容易受到训练数据的噪声而产生的过分拟合的影响;相反,如果K太大,最近分类器可能会误会分类测试样例,因为最近邻列表中可能包含远离其近邻的数据点。(如下图所示)

Python K最近邻从原理到实现的方法 

K较大时的最近邻分类

可见,K值的选取还是非常关键。

2.算法算法描述

k近邻算法简单、直观:给定一个训练数据集(包括类别标签),对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。下面是knn的算法步骤。

算法步骤如下所示:

Python K最近邻从原理到实现的方法

对每个测试样例z=(x′,y′),算法计算它和所有训练样例(x,y)属于D之间的距离(如欧氏距离,或相似度),以确定其最近邻列表Dz。如果训练样例的数目很大,那么这种计算的开销就会很大。不过,可以使索引技术降低为测试样例找最近邻是的计算量。

特征空间中两个实例点的距离是两个实例相似程度的反映。

一旦得到最近邻列表,测试样例就可以根据最近邻的多数类进行分类,使用多数表决方法。

K值选择

k值对模型的预测有着直接的影响,如果k值过小,预测结果对邻近的实例点非常敏感。如果邻近的实例恰巧是噪声数据,预测就会出错。也就是说,k值越小就意味着整个模型就变得越复杂,越容易发生过拟合。

相反,如果k值越大,有点是可以减少模型的预测误差,缺点是学习的近似误差会增大。会使得距离实例点较远的点也起作用,致使预测发生错误。同时,k值的增大意味着模型变得越来越简单。如果k=N,那么无论输入实例是什么,都将简单的把它预测为样本中最多的一类。这显然实不可取的。

在实际建模应用中,k值一般取一个较小的数值,通常采用cross-validation的方法来选择最优的k值。

3.K最邻近算法实现(Python)

KNN.py(代码来源《机器学习实战》一书)

from numpy import *
import operator

class KNN:
  def createDataset(self):
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

  def KnnClassify(self,testX,trainX,labels,K):
    [N,M]=trainX.shape

  #calculate the distance between testX and other training samples
    difference = tile(testX,(N,1)) - trainX # tile for array and repeat for matrix in Python, == repmat in Matlab
    difference = difference ** 2 # take pow(difference,2)
    distance = difference.sum(1) # take the sum of difference from all dimensions
    distance = distance ** 0.5
    sortdiffidx = distance.argsort()

  # find the k nearest neighbours
    vote = {} #create the dictionary
    for i in range(K):
      ith_label = labels[sortdiffidx[i]];
      vote[ith_label] = vote.get(ith_label,0)+1 #get(ith_label,0) : if dictionary 'vote' exist key 'ith_label', return vote[ith_label]; else return 0
    sortedvote = sorted(vote.iteritems(),key = lambda x:x[1], reverse = True)
    # 'key = lambda x: x[1]' can be substituted by operator.itemgetter(1)
    return sortedvote[0][0]

k = KNN() #create KNN object
group,labels = k.createDataset()
cls = k.KnnClassify([0,0],group,labels,3)
print cls

运行:
1. 在Python Shell 中可以运行KNN.py

>>>import os
>>>os.chdir("/home/liudiwei/code/data_miningKNN/")
>>>execfile("KNN.py")

输出:B
(B表示类别)

2.或者terminal中直接运行

$ python KNN.py

3.也可以不在KNN.py中写输出,而选择在Shell中获得结果,i.e.,

>>>import KNN
>>> KNN.k.KnnClassify([0,0],KNN.group,KNN.labels,3)

附件(两张自己的计算过程图):

Python K最近邻从原理到实现的方法 

1 KNN算法核心部分

Python K最近邻从原理到实现的方法 

图2 KNN计算过程

说明:上述图片仅供参考,看不懂就自己测试一组数据如[0,1]慢慢推导一下吧

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python修改注册表终止360进程实例
Oct 13 Python
Python通过正则表达式选取callback的方法
Jul 18 Python
通过数据库对Django进行删除字段和删除模型的操作
Jul 21 Python
Python实现螺旋矩阵的填充算法示例
Dec 28 Python
理论讲解python多进程并发编程
Feb 09 Python
Window10+Python3.5安装opencv的教程推荐
Apr 02 Python
mvc框架打造笔记之wsgi协议的优缺点以及接口实现
Aug 01 Python
pygame实现简易飞机大战
Sep 11 Python
基于Django ORM、一对一、一对多、多对多的全面讲解
Jul 26 Python
Python基于模块Paramiko实现SSHv2协议
Apr 28 Python
python 录制系统声音的示例
Dec 21 Python
Python内置包对JSON文件数据进行编码和解码
Apr 12 Python
Python数据可视化 pyecharts实现各种统计图表过程详解
Aug 15 #Python
浅谈Python 敏感词过滤的实现
Aug 15 #Python
pycharm创建scrapy项目教程及遇到的坑解析
Aug 15 #Python
通过selenium抓取某东的TT购买记录并分析趋势过程解析
Aug 15 #Python
Python依赖包整体迁移方法详解
Aug 15 #Python
使用python批量修改文件名的方法(视频合并时)
Mar 24 #Python
python 修改本地网络配置的方法
Aug 14 #Python
You might like
几个php应用技巧
2008/03/27 PHP
php auth_http类库进行身份效验
2009/03/19 PHP
php生成验证码,缩略图及水印图的类分享
2016/04/07 PHP
php mysql_real_escape_string addslashes及mysql绑定参数防SQL注入攻击
2016/12/23 PHP
php7安装yar扩展的方法详解
2017/08/03 PHP
PHP使用 Imagick 扩展实现图片合成,圆角处理功能示例
2019/09/09 PHP
js 调用父窗口的具体实现代码
2013/07/15 Javascript
Javascript四舍五入Math.round()与Math.pow()使用介绍
2013/12/27 Javascript
jQuery简单图表peity.js使用示例
2014/05/02 Javascript
JavaScript取得WEB安全颜色列表的方法
2015/07/14 Javascript
css如何让浮动元素水平居中
2015/08/07 Javascript
Node.js与Sails ~项目结构与Mvc实现及日志机制
2015/10/14 Javascript
4种JavaScript实现简单tab选项卡切换的方法
2016/01/06 Javascript
JS验证逗号隔开可以是中文字母数字
2016/04/22 Javascript
JS模拟bootstrap下拉菜单效果实例
2016/06/17 Javascript
JS两种类型的表单提交方法实例分析
2016/11/28 Javascript
nodejs基础知识
2017/02/03 NodeJs
Vuex之理解Getters的用法实例
2017/04/19 Javascript
node.js操作mongodb简单示例分享
2017/05/25 Javascript
js 将canvas生成图片保存,或直接保存一张图片的实现方法
2018/01/02 Javascript
微信小程序ibeacon三点定位详解
2018/10/31 Javascript
Vue使用Proxy监听所有接口状态的方法实现
2019/06/07 Javascript
通过JS深度判断两个对象字段相同
2019/06/14 Javascript
[01:01:14]完美世界DOTA2联赛PWL S2 SZ vs Rebirth 第一场 11.21
2020/11/23 DOTA
一个检测OpenSSL心脏出血漏洞的Python脚本分享
2014/04/10 Python
Python TestCase中的断言方法介绍
2019/05/02 Python
python语言基本语句用法总结
2019/06/11 Python
Numpy对数组的操作:创建、变形(升降维等)、计算、取值、复制、分割、合并
2019/08/28 Python
python自动结束mysql慢查询会话的实例代码
2019/10/27 Python
一套PHP的笔试题
2013/05/31 面试题
JDBC操作数据库的基本流程是什么
2014/10/28 面试题
学校安全检查制度
2014/01/27 职场文书
保健品市场营销方案
2014/03/31 职场文书
运动会加油稿20字
2014/11/15 职场文书
学习保证书怎么写
2015/02/26 职场文书
《一面五星红旗》教学反思
2016/02/23 职场文书