通过selenium抓取某东的TT购买记录并分析趋势过程解析


Posted in Python onAugust 15, 2019

最近学习了一些爬虫技术,想做个小项目检验下自己的学习成果,在逛某东的时候,突然给我推荐一个TT的产品,点击进去浏览一番之后就产生了抓取TT产品,然后进行数据分析,看下那个品牌的TT卖得最好。

本文通过selenium抓取TT信息,存入到mongodb数据库中。

抓取TT产品信息

TT产品页面的连接是

https://list.jd.com/list.html?cat=9192,9196,1502&page=1&sort=sort_totalsales15_desc&trans=1&JL=6_0_0#J_main

上面有个page参数,表示第几页。改变这个参数就可以爬取到不同页面的TT产品。

通过开发者工具看下如果抓取TT的产品信息,例如名字、品牌、价格、评论数量等。

通过selenium抓取某东的TT购买记录并分析趋势过程解析

通过上图可以看到一个TT产品信息对应的源代码是一个class为gl-item的li节点<li class='gl-item'>。li节点中data-sku属性是产品的ID,后面抓取产品的评论信息会用到,brand_id是品牌ID。class为p-price的div节点对应的是TT产品的价格信息。class为p-comment的div节点对应的是评论总数信息。

开始使用requests是总是无法解析到TT的价格和评论信息,最后适应selenium才解决了这个问题,如果有人知道怎么解决这问题,望不吝赐教。

下面介绍抓取TT产品评论信息。

点击一个TT产品,会跳转到产品详细页面,点击“商品评论”,然后勾选上“只看当前商品评价”选项(如果不勾选,就会看到该系列产品的评价)就会看到商品评论信息,我们用开发者工具看下如果抓取评论信息。

通过selenium抓取某东的TT购买记录并分析趋势过程解析

如上图所示,在开发者工具中,点击Network选项,就会看到

https://club.jd.com/discussion/getSkuProductPageImageCommentList.action?productId=3521615&isShadowSku=0&callback=jQuery6014001&page=2&pageSize=10&_=1547042223100

的链接,这个链接返回的是json数据。其中productId就是TT产品页面的data-sku属性的数据。page参数是第几页评论。返回的json数据中,content是评论数,createTime是下单时间。

代码如下:

def parse_product(page,html):
  doc = pq(html)
  li_list = doc('.gl-item').items()
  for li in li_list:
    product_id = li('.gl-i-wrap').attr('data-sku')
    brand_id = li('.gl-i-wrap').attr('brand_id')
    time.sleep(get_random_time())
    title = li('.p-name').find('em').text()
    price_items = li('.p-price').find('.J_price').find('i').items()
    price = 0
    for price_item in price_items:
      price = price_item.text()
      break
    total_comment_num = li('.p-commit').find('strong a').text()
    if total_comment_num.endswith("万+"):
      print('总评价数量:' + total_comment_num)
      total_comment_num = str(int(float(total_comment_num[0:len(total_comment_num) -2]) * 10000))
      print('转换后总评价数量:' + total_comment_num)
    elif total_comment_num.endswith("+"):
      total_comment_num = total_comment_num[0:len(total_comment_num) - 1]
    condom = {}
    condom["product_id"] = product_id
    condom["brand_id"] = brand_id
    condom["condom_name"] = title
    condom["total_comment_num"] = total_comment_num
    condom["price"] = price
    comment_url = 'https://club.jd.com/comment/skuProductPageComments.action?callback=fetchJSON_comment98vv117396&productId=%s&score=0&sortType=5&page=0&pageSize=10&isShadowSku=0&fold=1'
    comment_url = comment_url %(product_id)
    response = requests.get(comment_url,headers = headers)
    if response.text == '':
      for i in range(0,10):
        time.sleep(get_random_time())
        try:
          response = requests.get(comment_url, headers=headers)
        except requests.exceptions.ProxyError:
          time.sleep(get_random_time())
          response = requests.get(comment_url, headers=headers)
        if response.text:
          break
        else:
          continue
    text = response.text
    text = text[28:len(text) - 2]
    jsons = json.loads(text)
    productCommentSummary = jsons.get('productCommentSummary')
    # productCommentSummary = response.json().get('productCommentSummary')
    poor_count = productCommentSummary.get('poorCount')
    general_count = productCommentSummary.get('generalCount')
    good_count = productCommentSummary.get('goodCount')
    comment_count = productCommentSummary.get('commentCount')
    poor_rate = productCommentSummary.get('poorRate')
    good_rate = productCommentSummary.get('goodRate')
    general_rate = productCommentSummary.get('generalRate')
    default_good_count = productCommentSummary.get('defaultGoodCount')
    condom["poor_count"] = poor_count
    condom["general_count"] = general_count
    condom["good_count"] = good_count
    condom["comment_count"] = comment_count
    condom["poor_rate"] = poor_rate
    condom["good_rate"] = good_rate
    condom["general_rate"] = general_rate
    condom["default_good_count"] = default_good_count
    collection.insert(condom)
    comments = jsons.get('comments')
    if comments:
      for comment in comments:
        print('解析评论')
        condom_comment = {}
        reference_time = comment.get('referenceTime')
        content = comment.get('content')
        product_color = comment.get('productColor')
        user_client_show = comment.get('userClientShow')
        user_level_name = comment.get('userLevelName')
        is_mobile = comment.get('isMobile')
        creation_time = comment.get('creationTime')
        guid = comment.get("guid")
        condom_comment["reference_time"] = reference_time
        condom_comment["content"] = content
        condom_comment["product_color"] = product_color
        condom_comment["user_client_show"] = user_client_show
        condom_comment["user_level_name"] = user_level_name
        condom_comment["is_mobile"] = is_mobile
        condom_comment["creation_time"] = creation_time
        condom_comment["guid"] = guid
        collection_comment.insert(condom_comment)
    parse_comment(product_id)
def parse_comment(product_id):
  comment_url = 'https://club.jd.com/comment/skuProductPageComments.action?callback=fetchJSON_comment98vv117396&productId=%s&score=0&sortType=5&page=%d&pageSize=10&isShadowSku=0&fold=1'
  for i in range(1,200):
    time.sleep(get_random_time())
    time.sleep(get_random_time())
    print('抓取第' + str(i) + '页评论')
    url = comment_url%(product_id,i)
    response = requests.get(url, headers=headers,timeout=10)
    print(response.status_code)
    if response.text == '':
      for i in range(0,10):
        print('抓取不到数据')
        response = requests.get(comment_url, headers=headers)
        if response.text:
          break
        else:
          continue
    text = response.text
    print(text)
    text = text[28:len(text) - 2]
    print(text)
    jsons = json.loads(text)
    comments = jsons.get('comments')
    if comments:
      for comment in comments:
        print('解析评论')
        condom_comment = {}
        reference_time = comment.get('referenceTime')
        content = comment.get('content')
        product_color = comment.get('productColor')
        user_client_show = comment.get('userClientShow')
        user_level_name = comment.get('userLevelName')
        is_mobile = comment.get('isMobile')
        creation_time = comment.get('creationTime')
        guid = comment.get("guid")
        id = comment.get("id")
        condom_comment["reference_time"] = reference_time
        condom_comment["content"] = content
        condom_comment["product_color"] = product_color
        condom_comment["user_client_show"] = user_client_show
        condom_comment["user_level_name"] = user_level_name
        condom_comment["is_mobile"] = is_mobile
        condom_comment["creation_time"] = creation_time
        condom_comment["guid"] = guid
        condom_comment["id"] = id
        collection_comment.insert(condom_comment)
    else:
      break

如果想要获取抓取TT数据和评论的代码,请关注我的公众号“python_ai_bigdata”,然后恢复TT获取代码。

一共抓取了8934条产品信息和17万条评论(购买)记录。

产品最多的品牌

先分析8934个产品,看下哪个品牌的TT在京东上卖得最多。由于品牌过多,京东上销售TT的品牌就有299个,我们只取卖得最多的前10个品牌。

通过selenium抓取某东的TT购买记录并分析趋势过程解析

从上面的图可以看出,排名第1的是杜杜,冈本次之,邦邦第3,前10品牌分别是杜蕾斯、冈本、杰士邦、倍力乐、名流、第六感、尚牌、赤尾、诺丝和米奥。这10个品牌中有5个是我没见过的,分别是倍力乐、名流、尚牌、赤尾和米奥,其他的都见过,特别是杜杜和邦邦常年占据各大超市收银台的醒目位置。

这10个品牌中,杜蕾斯来自英国,冈本来自日本,杰士邦、第六感、赤尾、米奥和名流是国产的品牌,第六感是杰士邦旗下的一个避孕套品牌;倍力乐是中美合资的品牌,尚牌来自泰国,诺丝是来自美国的品牌。

代码:

import pymongo 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from pandas import DataFrame,Series
client = pymongo.MongoClient(host='localhost',port=27017) 
db = client.condomdb
condom_new = db.condom_new
cursor = condom_new.find() 
condom_df = pd.DataFrame(list(cursor)) 
brand_name_df = condom_df['brand_name'].to_frame()
brand_name_df['condom_num'] = 1
brand_name_group = brand_name_df.groupby('brand_name').sum()
brand_name_sort = brand_name_group.sort_values(by='condom_num', ascending=False)
brand_name_top10 = brand_name_sort.head(10)
# print(3 * np.random.rand(4))
index_list = []
labels = []
value_list = []
for index,row in brand_name_top10.iterrows():
  index_list.append(index)
  labels.append(index)
  value_list.append(int(row['condom_num']))
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

series_condom = pd.Series(value_list, index=index_list, name='')
series_condom.plot.pie(labels=labels,
         autopct='%.2f', fontsize=10, figsize=(10, 10))

卖得最好的产品

可以根据产品评价数量来判断一个产品卖得好坏,评价数最多的产品通常也是卖得最好的。

产品评论中有个产品评论总数的字段,我们就根据这个字段来排序,看下评论数量最多的前10个产品是什么(也就是评论数量最多的)。

通过selenium抓取某东的TT购买记录并分析趋势过程解析

从上图可以看出,卖得最好的还是杜杜的产品,10席中占了6席。杜杜的情爱四合一以1180000万的销量排名第一。

最受欢迎的是超薄的TT,占了8席,持久型的也比较受欢迎,狼牙套竟然也上榜了,真是大大的出乎我的意料。

销量分析

下图是TT销量最好的10天

通过selenium抓取某东的TT购买记录并分析趋势过程解析

可以看出这10天分别分布在6月、11月和12月,应该和我们熟知的618、双11和双12购物节有关。

现在很多电商都有自己的购物节,像618,双11和双12。由于一个产品最多只能显示100页的评论,每页10条评论,一个产品最多只能爬取到1000条评论,对于销量达到118万的情爱四合一来说,1000条评论不具有代表性,但是总的来说通过上图的分析,可以知道电商做活动的月份销量一般比较好。

下图是每个月份TT销售量柱状图,更加验证了上面的说法。

通过selenium抓取某东的TT购买记录并分析趋势过程解析

11月的销量最好,12月次之,6月份的销量第三。

购物平台

通过selenium抓取某东的TT购买记录并分析趋势过程解析

通过京东app购买TT的最多,91%的用户来自京东Android客户端和iphone客户端。6%的用户来自PC端,这几年4G的发展有关。

通过上面的分析可以知道,超薄的TT最受欢迎。杜杜的产品卖得最好,这和他们的营销方案有关,杜杜的文案可以称作教科书级的,每次发布文案都引起大家的讨论,堪称个个经典。移动客户端购买TT已经成为主流,占据90%以上的流量。

Python 相关文章推荐
利用Python将时间或时间间隔转为ISO 8601格式方法示例
Sep 05 Python
Windows下Python3.6安装第三方模块的方法
Nov 22 Python
在Pycharm terminal中字体大小设置的方法
Jan 16 Python
Python基础之循环语句用法示例【for、while循环】
Mar 23 Python
基于python实现的百度新歌榜、热歌榜下载器(附代码)
Aug 05 Python
Python龙贝格法求积分实例
Feb 29 Python
Pyspark读取parquet数据过程解析
Mar 27 Python
Python限制内存和CPU使用量的方法(Unix系统适用)
Aug 04 Python
Python filter过滤器原理及实例应用
Aug 18 Python
浅谈anaconda python 版本对应关系
Oct 07 Python
使用Djongo模块在Django中使用MongoDB数据库
Jun 20 Python
Python多线程实用方法以及共享变量资源竞争问题
Apr 12 Python
Python依赖包整体迁移方法详解
Aug 15 #Python
使用python批量修改文件名的方法(视频合并时)
Mar 24 #Python
python 修改本地网络配置的方法
Aug 14 #Python
python django 原生sql 获取数据的例子
Aug 14 #Python
django 连接数据库 sqlite的例子
Aug 14 #Python
Python将主机名转换为IP地址的方法
Aug 14 #Python
Python利用WMI实现ping命令的例子
Aug 14 #Python
You might like
利用PHP实现短域名互转
2013/07/05 PHP
PHP定时更新程序设计思路分享
2014/06/10 PHP
php使用pdo连接报错Connection failed SQLSTATE的解决方法
2014/12/15 PHP
PHP自定义函数格式化json数据示例
2016/09/14 PHP
Yii支持多域名cors原理的实现
2018/12/05 PHP
jQuery JSON实现无刷新三级联动实例探讨
2013/05/28 Javascript
使用 Node.js 做 Function Test实现方法
2013/10/25 Javascript
javascript实现的简单计时器
2015/07/19 Javascript
js判断radiobuttonlist的选中值显示/隐藏其它模块的实现方法
2016/08/25 Javascript
jQuery文本框得到与失去焦点动态改变样式效果
2016/09/08 Javascript
jquery html5 视频播放控制代码
2016/11/06 Javascript
JavaScript代码判断输入的字符串是否含有特殊字符和表情代码实例
2017/08/17 Javascript
jquery+css3实现熊猫tv导航代码分享
2018/02/12 jQuery
Element-UI Table组件上添加列拖拽效果实现方法
2018/04/14 Javascript
layui从数据库中获取复选框的值并默认选中方法
2018/08/15 Javascript
解决vue axios的封装 请求状态的错误提示问题
2018/09/25 Javascript
vue根据进入的路由进行原路返回的方法
2018/09/26 Javascript
ssm+vue前后端分离框架整合实现(附源码)
2020/07/08 Javascript
[45:15]Optic vs VP 2018国际邀请赛淘汰赛BO3 第一场 8.24
2018/08/25 DOTA
python判断windows隐藏文件的方法
2014/03/21 Python
Python学习笔记之if语句的使用示例
2017/10/23 Python
windows下Virtualenvwrapper安装教程
2017/12/13 Python
Python  unittest单元测试框架的使用
2018/09/08 Python
python django model联合主键的例子
2019/08/06 Python
Python学习工具jupyter notebook安装及用法解析
2020/10/23 Python
配置H5的滚动条样式的示例代码
2018/03/09 HTML / CSS
在网上学习全世界最好的课程:Coursera
2017/11/07 全球购物
美国在线购买内衣网站:HerRoom
2020/02/22 全球购物
会计电算一体化个人简历的自我评价
2013/10/15 职场文书
财务部岗位职责
2013/11/19 职场文书
人事部岗位职责范本
2014/03/05 职场文书
教师对学生的寄语
2014/04/03 职场文书
工资收入证明
2014/10/07 职场文书
2015年植树节活动总结
2015/02/06 职场文书
部门优秀员工推荐信
2015/03/24 职场文书
排查并解决MySQL生产库内存使用率高的报警
2022/04/11 MySQL