python 随机森林算法及其优化详解


Posted in Python onJuly 11, 2019

前言

优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合)

论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过。而人类最高明之处就是懂得利用前人总结的经验和制造的工具(说了这么多就是为偷懒找借口。hhhh)

优化思路

1. 计算传统模型准确率

2. 计算设定树木颗数时最佳树深度,以最佳深度重新生成随机森林

3. 计算新生成森林中每棵树的AUC,选取AUC靠前的一定百分比的树

4. 通过计算各个树的数据相似度,排除相似度超过设定值且AUC较小的树

5. 计算最终的准确率

主要代码粘贴如下(注释比较详细,就不介绍代码了)

#-*- coding: utf-8 -*-
import time
from csv import reader
from random import randint
from random import seed

import numpy as np
from numpy import mat

from group_11 import caculateAUC_1, plotTree

# 建立一棵CART树
'''试探分枝'''
def data_split(index, value, dataset):
 left, right = list(), list()
 for row in dataset:
  if row[index] < value:
   left.append(row)
  else:
   right.append(row)
 return left, right

'''计算基尼指数'''
def calc_gini(groups, class_values):
 gini = 0.0
 total_size = 0
 for group in groups:
  total_size += len(group)
 for group in groups:
  size = len(group)
  if size == 0:
   continue
  for class_value in class_values:
   proportion = [row[-1] for row in group].count(class_value) / float(size)
   gini += (size / float(total_size)) * (proportion * (1.0 - proportion))# 二分类执行两次,相当于*2
 return gini

'''找最佳分叉点'''
def get_split(dataset, n_features):
 class_values = list(set(row[-1] for row in dataset))# 类别标签集合
 b_index, b_value, b_score, b_groups = 999, 999, 999, None

 # 随机选取特征子集,包含n_features个特征
 features = list()
 while len(features) < n_features:
  # 随机选取特征
  # 特征索引
  index = randint(0, len(dataset[0]) - 2) # 往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取
  if index not in features:
   features.append(index)
 for index in features:  # 对每一个特征
  # 计算Gini指数
  for row in dataset: # 按照每个记录的该特征的取值划分成两个子集,计算对于的Gini(D,A),取最小的
   groups = data_split(index, row[index], dataset)
   gini = calc_gini(groups, class_values)
   if gini < b_score:
    b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 return {'index': b_index, 'value': b_value, 'groups': b_groups} # 每个节点由字典组成

'''多数表决'''
def to_terminal(group):
 outcomes = [row[-1] for row in group]
 return max(set(outcomes), key=outcomes.count)

'''分枝'''
def split(node, max_depth, min_size, n_features, depth):
 left, right = node['groups'] # 自动分包/切片
 del (node['groups'])
 if not left or not right: # left或者right为空时
  node['left'] = node['right'] = to_terminal(left + right) # 叶节点不好理解
  return

 if depth >= max_depth:
  node['left'], node['right'] = to_terminal(left), to_terminal(right)
  return
 # 左子树
 if len(left) <= min_size:
  node['left'] = to_terminal(left)
 else:
  node['left'] = get_split(left, n_features)
  split(node['left'], max_depth, min_size, n_features, depth + 1)
 # 右子树
 if len(right) <= min_size: # min_size最小的的分枝样本数
  node['right'] = to_terminal(right)
 else:
  node['right'] = get_split(right, n_features)
  split(node['right'], max_depth, min_size, n_features, depth + 1)

'''建立一棵树'''
def build_one_tree(train, max_depth, min_size, n_features):
 # 寻找最佳分裂点作为根节点
 root = get_split(train, n_features)
 split(root, max_depth, min_size, n_features, 1)
 return root

'''用森林里的一棵树来预测'''
def predict(node, row):
 if row[node['index']] < node['value']:
  if isinstance(node['left'], dict):
   return predict(node['left'], row)
  else:
   return node['left']
 else:
  if isinstance(node['right'], dict):
   return predict(node['right'], row)
  else:
   return node['right']


# 随机森林类
class randomForest:
 def __init__(self,trees_num, max_depth, leaf_min_size, sample_ratio, feature_ratio):
  self.trees_num = trees_num    # 森林的树的数目
  self.max_depth = max_depth    # 树深
  self.leaf_min_size = leaf_min_size  # 建立树时,停止的分枝样本最小数目
  self.samples_split_ratio = sample_ratio # 采样,创建子集的比例(行采样)
  self.feature_ratio = feature_ratio  # 特征比例(列采样)
  self.trees = list()      # 森林

 '''有放回的采样,创建数据子集'''
 def sample_split(self, dataset):
  sample = list()
  n_sample = round(len(dataset) * self.samples_split_ratio) #每棵树的采样数
  while len(sample) < n_sample:
   index = randint(0, len(dataset) - 2) #随机有放回的采样
   sample.append(dataset[index])
  return sample

 ##############***Out-of-Bag***################################
 # 进行袋外估计等相关函数的实现,需要注意并不是每个样本都可能出现在随机森林的袋外数据中
 # 因此进行oob估计时需要注意估计样本的数量
 def OOB(self, oobdata, train, trees):
  '''输入为:袋外数据dict,训练集,tree_list
  return oob准确率'''

  n_rows = []
  count = 0
  n_trees = len(trees) # 森林中树的棵树

  for key, item in oobdata.items():
   n_rows.append(item)

  # print(len(n_rows)) # 所有trees中的oob数据的合集

  n_rows_list = sum(n_rows, [])

  unique_list = []
  for l1 in n_rows_list: # 从oob合集中计算独立样本数量
   if l1 not in unique_list:
    unique_list.append(l1)

  n = len(unique_list)
  # print(n)

  # 对训练集中的每个数据,进行遍历,寻找其作为oob数据时的所有trees,并进行多数投票
  for row in train:
   pre = []
   for i in range(n_trees):
    if row not in oobdata[i]:
     # print('row: ',row)
     # print('trees[i]: ', trees[i])
     pre.append(predict(trees[i], row))
   if len(pre) > 0:
    label = max(set(pre), key=pre.count)
    if label == row[-1]:
     count += 1

  return (float(count) / n) * 100

 '''建立随机森林'''
 def build_randomforest(self, train):
  temp_flag = 0
  max_depth = self.max_depth   # 树深
  min_size = self.leaf_min_size  # 建立树时,停止的分枝样本最小数目
  n_trees = self.trees_num    # 森林的树的数目
  n_features = int(self.feature_ratio * (len(train[0])-1)) #列采样,从M个feature中,选择m个(m<<M)
  # print('特征值为 : ',n_features)
  oobs = {} # ----------------------
  for i in range(n_trees):   # 建立n_trees棵决策树
   sample = self.sample_split(train)  # 有放回的采样,创建数据子集
   oobs[i] = sample # ----------------
   tree = build_one_tree(sample, max_depth, min_size, n_features) # 建立决策树
   self.trees.append(tree)
   temp_flag += 1
   # print(i,tree)
  oob_score = self.OOB(oobs, train, self.trees) # oob准确率---------
  print("oob_score is ", oob_score) # 打印oob准确率---------
  return self.trees

 '''随机森林预测的多数表决'''
 def bagging_predict(self, onetestdata):
  predictions = [predict(tree, onetestdata) for tree in self.trees]
  return max(set(predictions), key=predictions.count)

 '''计算建立的森林的精确度'''
 def accuracy_metric(self, testdata):
  correct = 0
  for i in range(len(testdata)):
   predicted = self.bagging_predict(testdata[i])
   if testdata[i][-1] == predicted:
    correct += 1
  return correct / float(len(testdata)) * 100.0


# 数据处理
'''导入数据'''
def load_csv(filename):
 dataset = list()
 with open(filename, 'r') as file:
  csv_reader = reader(file)
  for row in csv_reader:
   if not row:
    continue
   # dataset.append(row)
   dataset.append(row[:-1])
 # return dataset
 return dataset[1:], dataset[0]

'''划分训练数据与测试数据'''
def split_train_test(dataset, ratio=0.3):
 #ratio = 0.2 # 取百分之二十的数据当做测试数据
 num = len(dataset)
 train_num = int((1-ratio) * num)
 dataset_copy = list(dataset)
 traindata = list()
 while len(traindata) < train_num:
  index = randint(0,len(dataset_copy)-1)
  traindata.append(dataset_copy.pop(index))
 testdata = dataset_copy
 return traindata, testdata

'''分析树,将向量内积写入list'''
def analyListTree(node, tag, result):
 # 叶子节点的父节点
 if (isinstance(node['left'], dict)):
  # 计算node与node[tag]的内积
  tag="left"
  re = Inner_product(node, tag)
  result.append(re)
  analyListTree(node['left'], 'left', result)
  return
 elif (isinstance(node['right'], dict)):
  # 计算node与node[tag]的内积
  tag = "right"
  re = Inner_product(node, tag)
  result.append(re)
  analyListTree(node['right'], 'right', result)
  return
 else:
  return

'''求向量内积'''
# 计算node与node[tag]的内积
def Inner_product(node ,tag):
 a = mat([[float(node['index'])], [float(node['value'])]])
 b = mat([[float(node[tag]['index'])], [float(node[tag]['value'])]])
 return (a.T * b)[0,0]

'''相似度优化'''
''' same_value = 20  # 向量内积的差(小于此值认为相似)
 same_rate = 0.63  # 树的相似度(大于此值认为相似)
 返回新的森林(已去掉相似度高的树)'''
def similarity_optimization(newforest, samevalue, samerate):
 res = list()    # 存储森林的内积
 result = list()    # 存储某棵树的内积
 i = 1
 for tree in newforest:
  # 分析树,将向量内积写入list
  # result 存储tree的内积
  analyListTree(tree, None, result)
  res.append(result)
  # print('第',i,'棵树:',len(result),result)
  result = []
 # print('res = ',len(res),res)
 # 取一棵树的单个向量内积与其他树的单个向量内积做完全对比(相似度)
 # 遍历列表的列
 for i in range(0, len(res) - 1):
  # 保证此列未被置空、
  if not newforest[i] == None:
   # 遍历做对比的树的列
   for k in range(i + 1, len(res)):
    if not newforest[k] == None:
     # time用于统计相似的次数,在每次更换对比树时重置为0
     time = 0
     # 遍历列表的当前行
     for j in range(0, len(res[i])):
      # 当前两颗树对比次数
      all_contrast = (res[ i].__len__() * res[k].__len__())
      # 遍历做对比的树的行
      for l in range(0, len(res[k])):
       # 如果向量的内积相等,计数器加一
       if res[i][j] - res[k][l] < samevalue:
        time = time + 1
      # 如果相似度大于设定值
     real_same_rate = time / all_contrast
     if (real_same_rate > samerate):
      # 将对比树置空
      newforest[k] = None
 result_forest = list()
 for i in range(0, newforest.__len__()):
  if not newforest[i] == None:
   result_forest.append(newforest[i])
 return result_forest


'''auc优化method'''
def auc_optimization(auclist,trees_num,trees):
 # 为auc排序,获取从大到小的与trees相对应的索引列表
 b = sorted(enumerate(auclist), key=lambda x: x[1], reverse=True)
 index_list = [x[0] for x in b]
 auc_num = int(trees_num * 2 / 3)
 # 取auc高的前auc_num个
 print('auc: ', auc_num, index_list)
 newTempForest = list()
 for i in range(auc_num):
  # myRF.trees.append(tempForest[i])
  # newTempForest.append(myRF.trees[index_list[i]])
  newTempForest.append(trees[index_list[i]])
 return newTempForest

'''得到森林中决策树的最佳深度'''
def getBestDepth(min_size,sample_ratio,trees_num,feature_ratio,traindata,testdata):
 max_depth = np.linspace(1, 15, 15, endpoint=True)
 # max_depth=[5,6,7,8,9,10,11,12,13,14,15]
 scores_final = []
 i=0
 for depth in max_depth:
  # 初始化随机森林
  # print('=========>',i,'<=============')
  myRF_ = randomForest(trees_num, depth, min_size, sample_ratio, feature_ratio)
  # 生成随机森林
  myRF_.build_randomforest(traindata)
  # 测试评估
  acc = myRF_.accuracy_metric(testdata[:-1])
  # print('模型准确率:', acc, '%')
  # scores_final.append(acc.mean())
  scores_final.append(acc*0.01)
  i=i+1
 # print('scores_final: ',scores_final)
 # 找到深度小且准确率高的值
 best_depth = 0
 temp_score = 0
 for i in range(len(scores_final)):
  if scores_final[i] > temp_score:
   temp_score = scores_final[i]
   best_depth = max_depth[i]
 # print('best_depth:',np.mean(scores_final),best_depth)
 # plt.plot(max_depth, scores_final, 'r-', lw=2)
 # # plt.plot(max_depth, list(range(0,max(scores_final))), 'r-', lw=2)
 # plt.xlabel('max_depth')
 # plt.ylabel('CV scores')
 # plt.ylim(bottom=0.0,top=1.0)
 # plt.grid()
 # plt.show()
 return best_depth


'''对比不同树个数时的模型正确率'''
def getMyRFAcclist(treenum_list):
 seed(1) # 每一次执行本文件时都能产生同一个随机数
 filename = 'DataSet3.csv'   #SMOTE处理过的数据
 min_size = 1
 sample_ratio = 1
 feature_ratio = 0.3 # 尽可能小,但是要保证 int(self.feature_ratio * (len(train[0])-1)) 大于1
 same_value = 20 # 向量内积的差(小于此值认为相似)
 same_rate = 0.63 # 树的相似度(大于此值认为相似)

 # 加载数据
 dataset, features = load_csv(filename)
 traindata, testdata = split_train_test(dataset, feature_ratio)
 # 森林中不同树个数的对比
 # treenum_list = [20, 30, 40, 50, 60]
 acc_num_list = list()
 acc_list=list()
 for trees_num in treenum_list:
  # 优化1-获取最优深度
  max_depth = getBestDepth(min_size, sample_ratio, trees_num, feature_ratio, traindata, testdata)
  print('max_depth is ', max_depth)

  # 初始化随机森林
  myRF = randomForest(trees_num, max_depth, min_size, sample_ratio, feature_ratio)
  # 生成随机森林
  myRF.build_randomforest(traindata)

  print('Tree_number: ', myRF.trees.__len__())
  # 计算森林中每棵树的AUC
  auc_list = caculateAUC_1.caculateRFAUC(testdata, myRF.trees)
  # 选取AUC高的决策数形成新的森林(auc优化)
  newTempForest = auc_optimization(auc_list,trees_num,myRF.trees)
  # 相似度优化
  myRF.trees = similarity_optimization(newTempForest, same_value, same_rate)
  # 测试评估
  acc = myRF.accuracy_metric(testdata[:-1])
  print('myRF1_模型准确率:', acc, '%')
  acc_num_list.append([myRF.trees.__len__(), acc])
  acc_list.append(acc)
 print('trees_num from 20 to 60: ', acc_num_list)
 return acc_list


if __name__ == '__main__':
 start = time.clock()
 seed(1) # 每一次执行本文件时都能产生同一个随机数
 filename = 'DataSet3.csv'  # 这里是已经利用SMOTE进行过预处理的数据集
 max_depth = 15 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
 min_size = 1
 sample_ratio = 1
 trees_num = 20

 feature_ratio = 0.3  # 尽可能小,但是要保证 int(self.feature_ratio * (len(train[0])-1)) 大于1
 same_value = 20  # 向量内积的差(小于此值认为相似)
 same_rate = 0.82  # 树的相似度(大于此值认为相似)
 # 加载数据
 dataset,features = load_csv(filename)
 traindata,testdata = split_train_test(dataset, feature_ratio)

 # 优化1-获取最优深度
 # max_depth = getBestDepth(min_size, sample_ratio, trees_num, feature_ratio, traindata, testdata)
 # print('max_depth is ',max_depth)

 # 初始化随机森林
 myRF = randomForest(trees_num, max_depth, min_size, sample_ratio, feature_ratio)
 # 生成随机森林
 myRF.build_randomforest(traindata)

 print('Tree_number: ', myRF.trees.__len__())
 acc = myRF.accuracy_metric(testdata[:-1])
 print('传统RF模型准确率:',acc,'%')

 # 画出某棵树用以可视化观察(这里是第一棵树)
 # plotTree.creatPlot(myRF.trees[0], features)
 # 计算森林中每棵树的AUC
 auc_list = caculateAUC_1.caculateRFAUC(testdata,myRF.trees)
 # 画出每棵树的auc——柱状图
 # plotTree.plotAUCbar(auc_list.__len__(),auc_list)

 # 选取AUC高的决策数形成新的森林(auc优化)
 newTempForest = auc_optimization(auc_list,trees_num,myRF.trees)
 # 相似度优化
 myRF.trees=similarity_optimization(newTempForest, same_value, same_rate)

 print('优化后Tree_number: ', myRF.trees.__len__())
 # 测试评估
 acc = myRF.accuracy_metric(testdata[:-1])
 # print('优化后模型准确率:', acc, '%')
 print('myRF1_模型准确率:', acc, '%')
 # 画出某棵树用以可视化观察(这里是第一棵树)
 # plotTree.creatPlot(myRF.trees[0], features)
 # 计算森林中每棵树的AUC
 auc_list = caculateAUC_1.caculateRFAUC(testdata, myRF.trees)
 # 画出每棵树的auc——柱状图
 plotTree.plotAUCbar(auc_list.__len__(), auc_list)
 end = time.clock()
 print('The end!')
 print(end-start)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 连连看连接算法
Nov 22 Python
删除目录下相同文件的python代码(逐级优化)
May 25 Python
PHP魔术方法__ISSET、__UNSET使用实例
Nov 25 Python
python简单获取本机计算机名和IP地址的方法
Jun 03 Python
详解MySQL数据类型int(M)中M的含义
Nov 20 Python
使用python实现链表操作
Jan 26 Python
django文档学习之applications使用详解
Jan 29 Python
Python延时操作实现方法示例
Aug 14 Python
Python实战购物车项目的实现参考
Feb 20 Python
解决python文件双击运行秒退的问题
Jun 24 Python
基于Python3读写INI配置文件过程解析
Jul 23 Python
python垃圾回收机制原理分析
Apr 13 Python
python实现从本地摄像头和网络摄像头截取图片功能
Jul 11 #Python
python常用库之NumPy和sklearn入门
Jul 11 #Python
python在新的图片窗口显示图片(图像)的方法
Jul 11 #Python
Python实现K折交叉验证法的方法步骤
Jul 11 #Python
Python获取命令实时输出-原样彩色输出并返回输出结果的示例
Jul 11 #Python
将python运行结果保存至本地文件中的示例讲解
Jul 11 #Python
详解python实现交叉验证法与留出法
Jul 11 #Python
You might like
PHP中array_merge和array相加的区别分析
2013/06/17 PHP
分享一个php 的异常处理程序
2014/06/22 PHP
采用memcache在web集群中实现session的同步会话
2014/07/05 PHP
PHP中配置IIS7实现基本身份验证的方法
2015/09/24 PHP
Yii中的cookie的发送和读取
2016/07/27 PHP
PHP基于DOMDocument解析和生成xml的方法分析
2017/07/17 PHP
php 中self,this的区别和操作方法实例分析
2019/11/04 PHP
jQuery 表格工具集
2010/04/25 Javascript
jQuery选择器的工作原理和优化分析
2011/07/25 Javascript
jquery 按键盘上的enter事件
2014/05/11 Javascript
jQuery 翻页组件yunm.pager.js实现div局部刷新的思路
2016/08/11 Javascript
Vue绑定内联样式问题
2018/10/17 Javascript
ES6知识点整理之模块化的应用详解
2019/04/15 Javascript
vue-router源码之history类的浅析
2019/05/21 Javascript
JS实现数组删除指定元素功能示例
2019/06/05 Javascript
详解用js代码触发dom事件的实现方案
2020/06/10 Javascript
详解vue中v-model和v-bind绑定数据的异同
2020/08/10 Javascript
vue Treeselect 树形下拉框:获取选中节点的ids和lables操作
2020/08/15 Javascript
python取余运算符知识点详解
2019/06/27 Python
Python简单实现区域生长方式
2020/01/16 Python
python实现IOU计算案例
2020/04/12 Python
Python如何telnet到网络设备
2021/02/18 Python
JD Sports意大利:英国篮球和运动时尚的领导者
2017/10/29 全球购物
Tom Dixon官网:英国照明及家具设计和制造公司
2019/03/01 全球购物
编写用C语言实现的求n阶阶乘问题的递归算法
2014/10/21 面试题
致百米运动员广播稿
2014/01/29 职场文书
《一件运动衫》教学反思
2014/02/19 职场文书
护士上岗前培训自我鉴定
2014/04/20 职场文书
教师调动申请报告
2015/05/18 职场文书
烛光里的微笑观后感
2015/06/17 职场文书
小学英语课教学反思
2016/02/15 职场文书
Go标准容器之Ring的使用说明
2021/05/05 Golang
Go timer如何调度
2021/06/09 Golang
redis cluster支持pipeline的实现思路
2021/06/23 Redis
Python Django模型详解
2021/10/05 Python
在CSS中使用when/else的方法
2022/01/18 HTML / CSS