Python数据可视化 pyecharts实现各种统计图表过程详解


Posted in Python onAugust 15, 2019

1、pyecharts介绍

Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表。

2、柱状图

适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。

优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。

缺点: 只适用中小规模的数据集。

柱状图最基本用法

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
sales = [18888,20023,30989,8873,29876,5409]
bar = Bar('水果销售情况')
bar.add('',fruits,sales,is_stack=True)
(bar.render())

Python数据可视化 pyecharts实现各种统计图表过程详解

add()方法用于添加数据。

当要比较不同商家水果销量情况,只需多次调用add()方法:

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=False)
shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=False)
bar.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

如果想在数据叠加显示,只需将is_stack参数设置为True

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=True)
shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=True)
bar.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

下面是柱状图中常用方法和属性介绍:

(1)add()方法中根据is_stack可以设定柱形图是否叠加显示

(2)is_more_utils=True 参数来设置最右侧工具栏,对生成的图进行更多的操作,如将柱形图更改为折线图等

(3)标记的使用:mark_point=[‘average']标记点,平均值;mark_line=[‘min','max','average']标记线,最大值、最小值和平均值

(4)横向柱形图:is_convert=True,标识交换X轴和Y轴

3、折线图

常用折线图来描绘统计事项总体指标的动态、研究对象间的依存关系以及总体中各部分的分配情况等。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'])
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

line()方法中有个is_smooth的参数,将参数的值设置为True,折线图的线条会以圆滑的趋势变化,不像上图那样以直线的方式变化。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_smooth=True)
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

上图的商家A设置了is_smooth参数的值为True,商家B没有设置is_smooth属性。可以看到商家B的折线是以圆滑的趋势变化的。

最常用的还有阶梯折线图和面积折线图。

阶梯折线图

将line()方法的is_step参数设置为True。

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_step=True)
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

面积折线图

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]
shop1_sales = [8888,3323,6989,8873,3876,15409]
line3 =Line("面积折线图")
line3.add("商家A", fruits, shop1_sales, is_fill=True, line_opacity=0.2,  area_opacity=0.4, symbol=None, mark_point=['max'])
line3.add("商家B", fruits, shop2_sales, is_fill=True, area_color='#a3aed5', area_opacity=0.3, is_smooth=True)
line3.show_config()
line3.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

柱状图-折线图

在柱状图上显示折线图也是常用的统计图表。需要借助Overlap类实现。

from pyecharts import Bar, Line, Overlap
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']

shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

bar = Bar("柱形图-折线图")
bar.add('bar', fruits, shop1_sales)
line = Line()
line.add('line', fruits, shop2_sales)

overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap.show_config()
overlap.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

4、饼图

饼图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.易于显示每组数据相对于总数的大小.而且显现方式直观.

from pyecharts import Pie
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
pie = Pie('饼图')
pie.add('芝麻饼', fruits, shop1_sales, is_label_show=True)
pie.show_config()
pie.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

玫瑰花样式饼图

pie2 = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie2.add("商家A", fruits, shop1_sales, center=[25, 50], is_random=True, radius=[25, 60], rosetype='radius')
pie2.add("商家B", fruits, shop2_sales, center=[75, 50], is_random=True, radius=[25, 60], rosetype='area', is_legend_show=False, is_label_show=True)
pie2.show_config()
pie2.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

5、散点图

散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。

静态散点图

from pyecharts import Scatter
scatter =Scatter("散点图示例")
scatter.add("A", shop1_sales, shop2_sales)
scatter.add("B", shop1_sales[::-1], shop2_sales)
scatter.show_config()
scatter.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

动态散点图

from pyecharts import EffectScatter
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]

# 动态散点图
es =EffectScatter("动态散点图")

# v1 x坐标 v2 y坐标
es.add('苹果', v1, v2)
es.show_config()
es.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

各种图形动态散点图

from pyecharts import EffectScatter
es = EffectScatter("动态散点图各种图形")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.show_config()
es.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

以上是使用pyecharts实现柱状图、折线图、散点图和饼图的统计图表。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python升级提示Tkinter模块找不到的解决方法
Aug 22 Python
编写Python脚本把sqlAlchemy对象转换成dict的教程
May 29 Python
尝试用最短的Python代码来实现服务器和代理服务器
Jun 23 Python
利用python为运维人员写一个监控脚本
Mar 25 Python
python模块smtplib实现纯文本邮件发送功能
May 22 Python
django输出html内容的实例
May 27 Python
python Tcp协议发送和接收信息的例子
Jul 22 Python
tensorflow多维张量计算实例
Feb 11 Python
Python 的 __str__ 和 __repr__ 方法对比
Sep 02 Python
4款Python 类型检查工具,你选择哪个呢?
Oct 30 Python
python基于opencv批量生成验证码的示例
Apr 28 Python
用python批量解压带密码的压缩包
May 31 Python
浅谈Python 敏感词过滤的实现
Aug 15 #Python
pycharm创建scrapy项目教程及遇到的坑解析
Aug 15 #Python
通过selenium抓取某东的TT购买记录并分析趋势过程解析
Aug 15 #Python
Python依赖包整体迁移方法详解
Aug 15 #Python
使用python批量修改文件名的方法(视频合并时)
Mar 24 #Python
python 修改本地网络配置的方法
Aug 14 #Python
python django 原生sql 获取数据的例子
Aug 14 #Python
You might like
DC《神奇女侠2》因疫情推迟上映 温子仁新恐怖片《恶性》撤档
2020/04/09 欧美动漫
Zend公司全球首推PHP认证
2006/10/09 PHP
php中文本数据翻页(留言本翻页)
2006/10/09 PHP
PHP的Yii框架中使用数据库的配置和SQL操作实例教程
2016/03/17 PHP
php生成静态页面并实现预览功能
2019/06/27 PHP
(function(){})()的用法与优点
2007/03/11 Javascript
PPK 谈 JavaScript 的 this 关键字 [翻译]
2009/09/29 Javascript
jquery实现图片渐变切换兼容ie6/Chrome/Firefox
2013/08/02 Javascript
jQuery动态添加删除select项(实现代码)
2013/09/03 Javascript
基于jquery的9行js轻松实现tab控件示例
2013/10/12 Javascript
8个实用的jQuery技巧
2014/03/04 Javascript
JS判断文本框内容改变事件的简单实例
2014/03/07 Javascript
jquery修改网页背景颜色通过css方法实现
2014/06/06 Javascript
javascript实现禁止复制网页内容
2014/12/16 Javascript
javascript 获取浏览器版本
2015/01/21 Javascript
JS中的二叉树遍历详解
2016/03/18 Javascript
jQuery插入节点和移动节点用法示例(insertAfter、insertBefore方法)
2016/09/08 Javascript
webpack v4 从dev到prd的方法
2018/04/02 Javascript
vue项目中应用ueditor自定义上传按钮功能
2018/04/27 Javascript
JS实现的input选择图片本地预览功能示例
2018/08/29 Javascript
vue如何在用户要关闭当前网页时弹出提示的实现
2020/05/31 Javascript
vue+ElementUI 关闭对话框清空验证,清除form表单的操作
2020/08/06 Javascript
vue 动态添加class,三个以上的条件做判断方式
2020/11/02 Javascript
javascript实现简单页面倒计时
2021/03/02 Javascript
python实现删除文件与目录的方法
2014/11/10 Python
Python命令行参数解析模块getopt使用实例
2015/04/13 Python
python+requests+unittest API接口测试实例(详解)
2017/06/10 Python
利用python实现简单的邮件发送客户端示例
2017/12/23 Python
python求最大值最小值方法总结
2019/06/25 Python
django中media媒体路径设置的步骤
2019/11/15 Python
将pycharm配置为matlab或者spyder的用法说明
2020/06/08 Python
法人代表证明书格式
2014/10/01 职场文书
小学班主任经验交流材料
2014/12/16 职场文书
房租涨价通知
2015/04/23 职场文书
mysql批量新增和存储的方法实例
2021/04/07 MySQL
Spring Boot项目传参校验的最佳实践指南
2022/04/05 Java/Android