Python数据可视化 pyecharts实现各种统计图表过程详解


Posted in Python onAugust 15, 2019

1、pyecharts介绍

Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表。

2、柱状图

适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。

优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。

缺点: 只适用中小规模的数据集。

柱状图最基本用法

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
sales = [18888,20023,30989,8873,29876,5409]
bar = Bar('水果销售情况')
bar.add('',fruits,sales,is_stack=True)
(bar.render())

Python数据可视化 pyecharts实现各种统计图表过程详解

add()方法用于添加数据。

当要比较不同商家水果销量情况,只需多次调用add()方法:

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=False)
shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=False)
bar.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

如果想在数据叠加显示,只需将is_stack参数设置为True

from pyecharts import Bar
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=True)
shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=True)
bar.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

下面是柱状图中常用方法和属性介绍:

(1)add()方法中根据is_stack可以设定柱形图是否叠加显示

(2)is_more_utils=True 参数来设置最右侧工具栏,对生成的图进行更多的操作,如将柱形图更改为折线图等

(3)标记的使用:mark_point=[‘average']标记点,平均值;mark_line=[‘min','max','average']标记线,最大值、最小值和平均值

(4)横向柱形图:is_convert=True,标识交换X轴和Y轴

3、折线图

常用折线图来描绘统计事项总体指标的动态、研究对象间的依存关系以及总体中各部分的分配情况等。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'])
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

line()方法中有个is_smooth的参数,将参数的值设置为True,折线图的线条会以圆滑的趋势变化,不像上图那样以直线的方式变化。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_smooth=True)
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

上图的商家A设置了is_smooth参数的值为True,商家B没有设置is_smooth属性。可以看到商家B的折线是以圆滑的趋势变化的。

最常用的还有阶梯折线图和面积折线图。

阶梯折线图

将line()方法的is_step参数设置为True。

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_step=True)
line.show_config()
line.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

面积折线图

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]
shop1_sales = [8888,3323,6989,8873,3876,15409]
line3 =Line("面积折线图")
line3.add("商家A", fruits, shop1_sales, is_fill=True, line_opacity=0.2,  area_opacity=0.4, symbol=None, mark_point=['max'])
line3.add("商家B", fruits, shop2_sales, is_fill=True, area_color='#a3aed5', area_opacity=0.3, is_smooth=True)
line3.show_config()
line3.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

柱状图-折线图

在柱状图上显示折线图也是常用的统计图表。需要借助Overlap类实现。

from pyecharts import Bar, Line, Overlap
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']

shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

bar = Bar("柱形图-折线图")
bar.add('bar', fruits, shop1_sales)
line = Line()
line.add('line', fruits, shop2_sales)

overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap.show_config()
overlap.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

4、饼图

饼图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.易于显示每组数据相对于总数的大小.而且显现方式直观.

from pyecharts import Pie
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
pie = Pie('饼图')
pie.add('芝麻饼', fruits, shop1_sales, is_label_show=True)
pie.show_config()
pie.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

玫瑰花样式饼图

pie2 = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie2.add("商家A", fruits, shop1_sales, center=[25, 50], is_random=True, radius=[25, 60], rosetype='radius')
pie2.add("商家B", fruits, shop2_sales, center=[75, 50], is_random=True, radius=[25, 60], rosetype='area', is_legend_show=False, is_label_show=True)
pie2.show_config()
pie2.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

5、散点图

散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。

静态散点图

from pyecharts import Scatter
scatter =Scatter("散点图示例")
scatter.add("A", shop1_sales, shop2_sales)
scatter.add("B", shop1_sales[::-1], shop2_sales)
scatter.show_config()
scatter.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

动态散点图

from pyecharts import EffectScatter
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]

# 动态散点图
es =EffectScatter("动态散点图")

# v1 x坐标 v2 y坐标
es.add('苹果', v1, v2)
es.show_config()
es.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

各种图形动态散点图

from pyecharts import EffectScatter
es = EffectScatter("动态散点图各种图形")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.show_config()
es.render()

Python数据可视化 pyecharts实现各种统计图表过程详解

以上是使用pyecharts实现柱状图、折线图、散点图和饼图的统计图表。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
tornado框架blog模块分析与使用
Nov 21 Python
python中使用sys模板和logging模块获取行号和函数名的方法
Apr 15 Python
JSON Web Tokens的实现原理
Apr 02 Python
Python获取本机所有网卡ip,掩码和广播地址实例代码
Jan 22 Python
Python yield与实现方法代码分析
Feb 06 Python
Python判断两个list是否是父子集关系的实例
May 04 Python
对python的文件内注释 help注释方法
May 23 Python
python实现Zabbix-API监控
Sep 17 Python
基于Python打造账号共享浏览器功能
May 30 Python
Python3 实现减少可调用对象的参数个数
Dec 20 Python
python设置表格边框的具体方法
Jul 17 Python
python 基于opencv操作摄像头
Dec 24 Python
浅谈Python 敏感词过滤的实现
Aug 15 #Python
pycharm创建scrapy项目教程及遇到的坑解析
Aug 15 #Python
通过selenium抓取某东的TT购买记录并分析趋势过程解析
Aug 15 #Python
Python依赖包整体迁移方法详解
Aug 15 #Python
使用python批量修改文件名的方法(视频合并时)
Mar 24 #Python
python 修改本地网络配置的方法
Aug 14 #Python
python django 原生sql 获取数据的例子
Aug 14 #Python
You might like
用PHP编写PDF文档生成器
2006/10/09 PHP
php5编程中的异常处理详细方法介绍
2008/07/29 PHP
Drupal7中常用的数据库操作实例
2014/03/02 PHP
php冒泡排序、快速排序、快速查找、二维数组去重实例分享
2014/04/24 PHP
为百度UE编辑器上传图片添加水印功能
2015/04/16 PHP
php实现将Session写入数据库
2015/07/26 PHP
php文件上传及下载附带显示文件及目录功能
2017/04/27 PHP
Thinkphp5行为使用方法汇总
2017/12/21 PHP
PHP缓存工具XCache安装与使用方法详解
2018/04/09 PHP
PHP中十六进制颜色与RGB颜色值互转的方法
2019/03/18 PHP
网页中实现浏览器的最大,最小化和关闭按钮
2007/03/12 Javascript
Javascript中的window.event.keyCode使用介绍
2011/04/26 Javascript
网页右键ie不支持event.preventDefault和event.returnValue (需要加window)
2013/02/22 Javascript
用Js实现的动态增加表格示例自己写的
2013/10/21 Javascript
Event altKey,ctrlKey,shiftKey属性解析
2013/12/18 Javascript
JavaScript实现图片轮播组件代码示例
2016/11/22 Javascript
利用jquery获取select下拉框的值
2016/11/23 Javascript
浅谈jQuery before和insertBefore的区别
2016/12/04 Javascript
Vue利用canvas实现移动端手写板的方法
2018/05/03 Javascript
Vue.js实现可编辑的表格
2019/12/11 Javascript
arcgis.js控制地图地体的显示范围超出区域自动弹回(实现思路)
2021/01/28 Javascript
python3爬虫获取html内容及各属性值的方法
2018/12/17 Python
Python增强赋值和共享引用注意事项小结
2019/05/28 Python
pyqt5 使用label控件实时显示时间的实例
2019/06/14 Python
使用python 将图片复制到系统剪贴中
2019/12/13 Python
pytorch中使用cuda扩展的实现示例
2020/02/12 Python
PyQt5事件处理之定时在控件上显示信息的代码
2020/03/25 Python
CSS3转换功能transform主要属性值分析及实现分享
2012/05/06 HTML / CSS
StubHub巴西:购买和出售您的门票
2016/07/22 全球购物
阿迪达斯法国官方网站:adidas法国
2018/03/20 全球购物
Bonami斯洛伐克:购买家具和家居饰品
2019/07/02 全球购物
介绍一下Linux文件的记录形式
2013/09/29 面试题
教师专业理论水平的自我评价分享
2013/11/09 职场文书
食品质量与安全专业毕业生求职信
2014/08/11 职场文书
幼儿园感谢信
2015/01/21 职场文书
2015年世界无烟日活动方案
2015/05/04 职场文书