python读写数据读写csv文件(pandas用法)


Posted in Python onDecember 14, 2020

python中数据处理是比较方便的,经常用的就是读写文件,提取数据等,本博客主要介绍其中的一些用法。Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

一、pandas读取csv文件

数据处理过程中csv文件用的比较多。

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')

下面看一下pd.read_csv常用的参数:

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

常用参数解释:read_csv与read_table常用的参数(更多参数查看官方手册):

filepath_or_buffer #需要读取的文件及路径
sep / delimiter 列分隔符,普通文本文件,应该都是使用结构化的方式来组织,才能使用dataframe
header 文件中是否需要读取列名的一行,header=None(使用names自定义列名,否则默认0,1,2,...),header=0(将首行设为列名)
names 如果header=None,那么names必须制定!否则就没有列的定义了。
shkiprows= 10 # 跳过前十行 
nrows = 10 # 只去前10行 
usecols=[0,1,2,...] #需要读取的列,可以是列的位置编号,也可以是列的名称
parse_dates = ['col_name'] # 指定某行读取为日期格式 
index_col = None /False /0,重新生成一列成为index值,0表示第一列,用作行索引的列编号或列名。可以是单个名称/数字或由多个名称/数宇组成的列表(层次化索引)
error_bad_lines = False # 当某行数据有问题时,不报错,直接跳过,处理脏数据时使用 
na_values = 'NULL' # 将NULL识别为空值
encoding='utf-8' #指明读取文件的编码,默认utf-8

读取csv/txt/tsv文件,返回一个DataFrame类型的对象。

举例:

python读写数据读写csv文件(pandas用法)

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)

  name age    birth
0  zhu  20  2000.1.5
1  wang  20  2000.6.18
2 zhang  21 1999.11.11
3  zhu  22 1998.10.24

pandas用iloc,loc提取数据

提取行数据:

loc函数:通过行索引 “Index” 中的具体值来取行数据(如取"Index"为"A"的行)

iloc函数:通过行号来取行数据(如取第2行的数据)

import pandas as pd
import numpy as np
#创建一个Dataframe
data = pd.DataFrame(np.arange(16).reshape(4, 4), index=list('abcd'), columns=list('ABCD'))
print(data)

  A  B  C  D
a  0  1  2  3
b  4  5  6  7
c  8  9 10 11
d 12 13 14 15

loc提取'a'的行:

print(data.loc['a'])

A  0
B  1
C  2
D  3
Name: a, dtype: int32

iloc提取第2行:

print(data.iloc[2])

A   8
B   9
C  10
D  11
Name: c, dtype: int32

提取列数据

print(data.loc[:, ['A']])#取'A'列所有行,多取几列格式为 data.loc[:,['A','B']]

  A
a  0
b  4
c  8
d 12
print(data.iloc[:, [0]])

  A
a  0
b  4
c  8
d 12

提取指定行,指定列

print(data.loc[['a','b'],['A','B']]) #提取index为'a','b',列名为'A','B'中的数据

  A B
a 0 1
b 4 5
print(data.iloc[[0,1],[0,1]]) #提取第0、1行,第0、1列中的数据

  A B
a 0 1
b 4 5

提取所有行所有列:

print(data.loc[:,:])#取A,B,C,D列的所有行
print(data.iloc[:,:])

  A  B  C  D
a  0  1  2  3
b  4  5  6  7
c  8  9 10 11
d 12 13 14 15

根据某个指定数据提取行

print(data.loc[data['A']==0])#提取data数据(筛选条件: A列中数字为0所在的行数据)

  A B C D
a 0 1 2 3

二、pandas写入csv文件

pandas将多组列表写入csv

import pandas as pd

#任意的多组列表
a = [1,2,3]
b = [4,5,6]  

#字典中的key值即为csv中列名
dataframe = pd.DataFrame({'a_name':a,'b_name':b})

#将DataFrame存储为csv,index表示是否显示行名,default=True
dataframe.to_csv("test.csv",index=False,sep=',')

结果:

python读写数据读写csv文件(pandas用法)

如果你想写入一行,就是你存储的一个列表是一行数据,你想把这一行数据写入csv文件。

这个时候可以使用csv方法,一行一行的写

import csv

with open("test.csv","w") as csvfile: 
  writer = csv.writer(csvfile)

  #先写入columns_name
  writer.writerow(["index","a_name","b_name"])
  #写入一行用writerow
  #write.writerow([0,1,2])
  #写入多行用writerows
  writer.writerows([[0,1,3],[1,2,3],[2,3,4]])

python读写数据读写csv文件(pandas用法)

可以看到,每次写一行,就自动空行,解决办法就是在打开文件的时候加上参数newline=''

import csv

with open("F:/zhu/test/test.csv","w", newline='') as csvfile:
  writer = csv.writer(csvfile)

  #先写入columns_name
  writer.writerow(["index","a_name","b_name"])
  #写入多行用writerows
  writer.writerows([[0,1,3],[1,2,3],[2,3,4]])

python读写数据读写csv文件(pandas用法)

写入txt文件类似

(1)创建txt数据文件,创建好文件记得要关闭文件,不然读取不了文件内容

(2)读取txt文件

#读取txt文件
file=open("G:\\info.txt",'r',encoding='utf-8')
userlines=file.readlines()
file.close()
for line in userlines:
  username=line.split(',')[0] #读取用户名
  password=line.split(',')[1] #读取密码
  print(username,password)

三、pandas查看数据表信息

1)查看维度:data.shape

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.shape)

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
(3, 3)

2)查看数据表基本信息:data.info

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.info)

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
<bound method DataFrame.info of  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4>

3)查看每一行的格式:data.dtype

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data.dtypes)

index   int64
a_name  int64
b_name  int64
dtype: object

4)查看前2行数据、后2行数据

df.head() #默认前10行数据,注意:可以在head函数中填写参数,自定义要查看的行数
df.tail() #默认后10 行数据
import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.head(2))
print(data.tail(2))

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
  index a_name b_name
0   0    1    3
1   1    2    3
  index a_name b_name
1   1    2    3
2   2    3    4

四、数据清洗

1)NaN数值的处理:用数字0填充空值

data.fillna(value=0,inplace=True)

注意:df.fillna不会立即生效,需要设置inplace=True

2)清除字符字段的字符空格

字符串(str)的头和尾的空格,以及位于头尾的\n \t之类给删掉

data['customername']=data['customername'].map(str.strip)#如清除customername中出现的空格

3)大小写转换

data['customername']=data['customername'].str.lower()

4)删除重复出现的值

data.drop_duplicates(['customername'],inplace=True)

5)数据替换

data['customername'].replace('111','qqq',inplace=True)

参考:

《Python之pandas简介》
《Pandas中loc和iloc函数用法详解(源码+实例) 》

到此这篇关于python读写数据读写csv文件(pandas用法)的文章就介绍到这了,更多相关python读写csv内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用python实现扫描端口示例
Mar 29 Python
Python随机生成数模块random使用实例
Apr 13 Python
Python制作钉钉加密/解密工具
Dec 07 Python
python利用拉链法实现字典方法示例
Mar 25 Python
python opencv实现运动检测
Jul 10 Python
用Python将mysql数据导出成json的方法
Aug 21 Python
pycharm中成功运行图片的配置教程
Oct 28 Python
Python音频操作工具PyAudio上手教程详解
Jun 26 Python
Python math库 ln(x)运算的实现及原理
Jul 17 Python
python matplotlib实现将图例放在图外
Apr 17 Python
Python判断远程服务器上Excel文件是否被人打开的方法
Jul 13 Python
python实现网页录音效果
Oct 26 Python
详解Python中@staticmethod和@classmethod区别及使用示例代码
Dec 14 #Python
Python 找出英文单词列表(list)中最长单词链
Dec 14 #Python
Python 排序最长英文单词链(列表中前一个单词末字母是下一个单词的首字母)
Dec 14 #Python
Python实现Kerberos用户的增删改查操作
Dec 14 #Python
python-地图可视化组件folium的操作
Dec 14 #Python
python多线程和多进程关系详解
Dec 14 #Python
Python Pandas list列表数据列拆分成多行的方法实现
Dec 14 #Python
You might like
php设计模式 Facade(外观模式)
2011/06/26 PHP
PHP输出当前进程所有变量/常量/模块/函数/类的示例
2013/11/07 PHP
smarty内置函数section的用法
2015/01/22 PHP
Yii2实现增删改查后留在当前页的方法详解
2017/01/13 PHP
PHP获取日期对应星期、一周日期、星期开始与结束日期的方法
2018/06/22 PHP
一个符号插入器 中用到的js代码
2007/09/04 Javascript
js Dialog 实践分享
2012/10/22 Javascript
Extjs4 GridPanel的主要配置参数详细介绍
2013/04/18 Javascript
谈谈我对JavaScript原型和闭包系列理解(随手笔记6)
2015/12/20 Javascript
基于MVC5和Bootstrap的jQuery TreeView树形控件(二)之数据支持json字符串、list集合
2016/08/11 Javascript
jquery dataview数据视图插件使用方法
2016/12/23 Javascript
详解Angular2中Input和Output用法及示例
2017/05/21 Javascript
AngularJS实现的JSONP跨域访问数据传输功能详解
2017/07/20 Javascript
让 babel webpack vue 配置文件支持智能提示的方法
2019/06/22 Javascript
vue elementui 实现搜索栏公共组件封装的实例代码
2020/01/20 Javascript
一文秒懂JavaScript构造函数、实例、原型对象以及原型链
2020/08/25 Javascript
[40:48]DOTA2上海特级锦标赛D组败者赛 Liquid VS COL第二局
2016/02/28 DOTA
[55:11]完美世界DOTA2联赛PWL S2 SZ vs LBZS 第一场 11.26
2020/11/30 DOTA
python爬虫之BeautifulSoup 使用select方法详解
2017/10/23 Python
python 将dicom图片转换成jpg图片的实例
2020/01/13 Python
解决keras,val_categorical_accuracy:,0.0000e+00问题
2020/07/02 Python
Python中flatten( ),matrix.A用法说明
2020/07/05 Python
通过实例解析Python文件操作实现步骤
2020/09/21 Python
手把手教你从PyCharm安装到激活(最新激活码),亲测有效可激活至2089年
2020/11/25 Python
利用python如何实现猫捉老鼠小游戏
2020/12/04 Python
Python jieba库分词模式实例用法
2021/01/13 Python
一款利用css3的鼠标经过动画显示详情特效的实例教程
2014/12/29 HTML / CSS
css3实现简单的白云飘动背景特效
2020/10/28 HTML / CSS
德国著名廉价网上药店:Shop-Apotheke
2017/07/23 全球购物
中东最大的在线宠物店:Dubai Pet Food
2020/06/11 全球购物
中英双版中文教师求职信
2013/10/27 职场文书
乡镇领导班子四风整顿行动工作汇报
2014/10/25 职场文书
2014年建筑工程工作总结
2014/12/03 职场文书
redis连接被拒绝的解决方案
2021/04/12 Redis
golang elasticsearch Client的使用详解
2021/05/05 Golang
Python OpenCV实现图形检测示例详解
2022/04/08 Python