python读写数据读写csv文件(pandas用法)


Posted in Python onDecember 14, 2020

python中数据处理是比较方便的,经常用的就是读写文件,提取数据等,本博客主要介绍其中的一些用法。Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

一、pandas读取csv文件

数据处理过程中csv文件用的比较多。

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')

下面看一下pd.read_csv常用的参数:

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

常用参数解释:read_csv与read_table常用的参数(更多参数查看官方手册):

filepath_or_buffer #需要读取的文件及路径
sep / delimiter 列分隔符,普通文本文件,应该都是使用结构化的方式来组织,才能使用dataframe
header 文件中是否需要读取列名的一行,header=None(使用names自定义列名,否则默认0,1,2,...),header=0(将首行设为列名)
names 如果header=None,那么names必须制定!否则就没有列的定义了。
shkiprows= 10 # 跳过前十行 
nrows = 10 # 只去前10行 
usecols=[0,1,2,...] #需要读取的列,可以是列的位置编号,也可以是列的名称
parse_dates = ['col_name'] # 指定某行读取为日期格式 
index_col = None /False /0,重新生成一列成为index值,0表示第一列,用作行索引的列编号或列名。可以是单个名称/数字或由多个名称/数宇组成的列表(层次化索引)
error_bad_lines = False # 当某行数据有问题时,不报错,直接跳过,处理脏数据时使用 
na_values = 'NULL' # 将NULL识别为空值
encoding='utf-8' #指明读取文件的编码,默认utf-8

读取csv/txt/tsv文件,返回一个DataFrame类型的对象。

举例:

python读写数据读写csv文件(pandas用法)

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)

  name age    birth
0  zhu  20  2000.1.5
1  wang  20  2000.6.18
2 zhang  21 1999.11.11
3  zhu  22 1998.10.24

pandas用iloc,loc提取数据

提取行数据:

loc函数:通过行索引 “Index” 中的具体值来取行数据(如取"Index"为"A"的行)

iloc函数:通过行号来取行数据(如取第2行的数据)

import pandas as pd
import numpy as np
#创建一个Dataframe
data = pd.DataFrame(np.arange(16).reshape(4, 4), index=list('abcd'), columns=list('ABCD'))
print(data)

  A  B  C  D
a  0  1  2  3
b  4  5  6  7
c  8  9 10 11
d 12 13 14 15

loc提取'a'的行:

print(data.loc['a'])

A  0
B  1
C  2
D  3
Name: a, dtype: int32

iloc提取第2行:

print(data.iloc[2])

A   8
B   9
C  10
D  11
Name: c, dtype: int32

提取列数据

print(data.loc[:, ['A']])#取'A'列所有行,多取几列格式为 data.loc[:,['A','B']]

  A
a  0
b  4
c  8
d 12
print(data.iloc[:, [0]])

  A
a  0
b  4
c  8
d 12

提取指定行,指定列

print(data.loc[['a','b'],['A','B']]) #提取index为'a','b',列名为'A','B'中的数据

  A B
a 0 1
b 4 5
print(data.iloc[[0,1],[0,1]]) #提取第0、1行,第0、1列中的数据

  A B
a 0 1
b 4 5

提取所有行所有列:

print(data.loc[:,:])#取A,B,C,D列的所有行
print(data.iloc[:,:])

  A  B  C  D
a  0  1  2  3
b  4  5  6  7
c  8  9 10 11
d 12 13 14 15

根据某个指定数据提取行

print(data.loc[data['A']==0])#提取data数据(筛选条件: A列中数字为0所在的行数据)

  A B C D
a 0 1 2 3

二、pandas写入csv文件

pandas将多组列表写入csv

import pandas as pd

#任意的多组列表
a = [1,2,3]
b = [4,5,6]  

#字典中的key值即为csv中列名
dataframe = pd.DataFrame({'a_name':a,'b_name':b})

#将DataFrame存储为csv,index表示是否显示行名,default=True
dataframe.to_csv("test.csv",index=False,sep=',')

结果:

python读写数据读写csv文件(pandas用法)

如果你想写入一行,就是你存储的一个列表是一行数据,你想把这一行数据写入csv文件。

这个时候可以使用csv方法,一行一行的写

import csv

with open("test.csv","w") as csvfile: 
  writer = csv.writer(csvfile)

  #先写入columns_name
  writer.writerow(["index","a_name","b_name"])
  #写入一行用writerow
  #write.writerow([0,1,2])
  #写入多行用writerows
  writer.writerows([[0,1,3],[1,2,3],[2,3,4]])

python读写数据读写csv文件(pandas用法)

可以看到,每次写一行,就自动空行,解决办法就是在打开文件的时候加上参数newline=''

import csv

with open("F:/zhu/test/test.csv","w", newline='') as csvfile:
  writer = csv.writer(csvfile)

  #先写入columns_name
  writer.writerow(["index","a_name","b_name"])
  #写入多行用writerows
  writer.writerows([[0,1,3],[1,2,3],[2,3,4]])

python读写数据读写csv文件(pandas用法)

写入txt文件类似

(1)创建txt数据文件,创建好文件记得要关闭文件,不然读取不了文件内容

(2)读取txt文件

#读取txt文件
file=open("G:\\info.txt",'r',encoding='utf-8')
userlines=file.readlines()
file.close()
for line in userlines:
  username=line.split(',')[0] #读取用户名
  password=line.split(',')[1] #读取密码
  print(username,password)

三、pandas查看数据表信息

1)查看维度:data.shape

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.shape)

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
(3, 3)

2)查看数据表基本信息:data.info

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.info)

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
<bound method DataFrame.info of  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4>

3)查看每一行的格式:data.dtype

import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data.dtypes)

index   int64
a_name  int64
b_name  int64
dtype: object

4)查看前2行数据、后2行数据

df.head() #默认前10行数据,注意:可以在head函数中填写参数,自定义要查看的行数
df.tail() #默认后10 行数据
import pandas as pd
data = pd.read_csv('F:/Zhu/test/test.csv')
print(data)
print(data.head(2))
print(data.tail(2))

  index a_name b_name
0   0    1    3
1   1    2    3
2   2    3    4
  index a_name b_name
0   0    1    3
1   1    2    3
  index a_name b_name
1   1    2    3
2   2    3    4

四、数据清洗

1)NaN数值的处理:用数字0填充空值

data.fillna(value=0,inplace=True)

注意:df.fillna不会立即生效,需要设置inplace=True

2)清除字符字段的字符空格

字符串(str)的头和尾的空格,以及位于头尾的\n \t之类给删掉

data['customername']=data['customername'].map(str.strip)#如清除customername中出现的空格

3)大小写转换

data['customername']=data['customername'].str.lower()

4)删除重复出现的值

data.drop_duplicates(['customername'],inplace=True)

5)数据替换

data['customername'].replace('111','qqq',inplace=True)

参考:

《Python之pandas简介》
《Pandas中loc和iloc函数用法详解(源码+实例) 》

到此这篇关于python读写数据读写csv文件(pandas用法)的文章就介绍到这了,更多相关python读写csv内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现查找匹配项作处理后再替换回去的方法
Jun 10 Python
Linux-ubuntu16.04 Python3.5配置OpenCV3.2的方法
Apr 02 Python
pandas 选择某几列的方法
Jul 03 Python
Python使用reportlab模块生成PDF格式的文档
Mar 11 Python
python的pytest框架之命令行参数详解(下)
Jun 27 Python
django日志默认打印request请求信息的方法示例
May 17 Python
python3从网络摄像机解析mjpeg http流的示例
Nov 13 Python
Python3中FuzzyWuzzy库实例用法
Nov 18 Python
VSCode中autopep8无法运行问题解决方案(提示Error: Command failed,usage)
Mar 02 Python
Python基础之字符串格式化详解
Apr 21 Python
浅谈tf.train.Saver()与tf.train.import_meta_graph的要点
May 26 Python
Python用any()函数检查字符串中的字母以及如何使用all()函数
Apr 14 Python
详解Python中@staticmethod和@classmethod区别及使用示例代码
Dec 14 #Python
Python 找出英文单词列表(list)中最长单词链
Dec 14 #Python
Python 排序最长英文单词链(列表中前一个单词末字母是下一个单词的首字母)
Dec 14 #Python
Python实现Kerberos用户的增删改查操作
Dec 14 #Python
python-地图可视化组件folium的操作
Dec 14 #Python
python多线程和多进程关系详解
Dec 14 #Python
Python Pandas list列表数据列拆分成多行的方法实现
Dec 14 #Python
You might like
几个php应用技巧
2008/03/27 PHP
php中利用str_pad函数生成数字递增形式的产品编号
2013/09/30 PHP
非常好用的Zend Framework分页类
2014/06/25 PHP
php源码分析之DZX1.5字符串截断函数cutstr用法
2015/06/17 PHP
再谈PHP中单双引号的区别详解
2016/06/12 PHP
Smarty3配置及入门语法
2017/02/22 PHP
js操纵跨frame的三级联动select下拉选项实例介绍
2013/05/19 Javascript
可选择和输入的下拉列表框示例
2013/11/05 Javascript
JS下载文件|无刷新下载文件示例代码
2014/04/17 Javascript
深入解析桶排序算法及Node.js上JavaScript的代码实现
2016/07/06 Javascript
js倒计时小实例(多次定时)
2016/12/08 Javascript
Javascript this 函数深入详解
2016/12/13 Javascript
Bootstrap源码解读标签、徽章、缩略图和警示框(8)
2016/12/26 Javascript
深入理解JavaScript 中的执行上下文和执行栈
2018/10/23 Javascript
Async/Await替代Promise的6个理由
2019/06/15 Javascript
js设置鼠标悬停改变背景色实现详解
2019/06/26 Javascript
微信小程序的开发范式BeautyWe.js入门详解
2019/07/10 Javascript
javascript中的闭包概念与用法实践分析
2019/07/26 Javascript
node实现mock-plugin中间件的方法
2019/12/25 Javascript
vue 使用v-for进行循环的实例代码详解
2020/02/19 Javascript
[40:29]2018DOTA2亚洲邀请赛 4.7总决赛 LGD vs Mineski 第一场
2018/04/10 DOTA
在Ubuntu系统下安装使用Python的GUI工具wxPython
2016/02/18 Python
视觉直观感受若干常用排序算法
2017/04/13 Python
Python代码缩进和测试模块示例详解
2018/05/07 Python
Python多重继承的方法解析执行顺序实例分析
2018/05/26 Python
django之使用celery-把耗时程序放到celery里面执行的方法
2019/07/12 Python
django创建最简单HTML页面跳转方法
2019/08/16 Python
Python 防止死锁的方法
2020/07/29 Python
python可视化分析的实现(matplotlib、seaborn、ggplot2)
2021/02/03 Python
Revolution Beauty美国官网:英国知名化妆品网站
2018/07/23 全球购物
电力公司个人求职信范文
2014/02/04 职场文书
小学运动会班级口号
2014/06/09 职场文书
2014年体育教师工作总结
2014/12/03 职场文书
课题研究阶段性总结
2015/08/13 职场文书
《世界多美呀》教学反思
2016/02/22 职场文书
Mysql中调试存储过程最简单的方法
2021/06/30 MySQL