Keras—embedding嵌入层的用法详解


Posted in Python onJune 10, 2020

最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的。

Keras中embedding层做一下介绍。

中文文档地址:https://keras.io/zh/layers/embeddings/

参数如下:

Keras—embedding嵌入层的用法详解

其中参数重点有input_dim,output_dim,非必选参数input_length.

初始化方法参数设置后面会单独总结一下。

demo使用预训练(使用百度百科(word2vec)的语料库)参考

embedding使用的demo参考:

def create_embedding(word_index, num_words, word2vec_model):
 embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))
 for word, i in word_index.items():
  try:
   embedding_vector = word2vec_model[word]
   embedding_matrix[i] = embedding_vector
  except:
   continue
 return embedding_matrix
 
#word_index:词典(统计词转换为索引)
#num_word:词典长度+1
#word2vec_model:词向量的model

加载词向量model的方法:

def pre_load_embedding_model(model_file):
 # model = gensim.models.Word2Vec.load(model_file)
 # model = gensim.models.Word2Vec.load(model_file,binary=True)
 model = gensim.models.KeyedVectors.load_word2vec_format(model_file)
 return model

model中Embedding层的设置(注意参数,Input层的输入,初始化方法):

embedding_matrix = create_embedding(word_index, num_words, word2vec_model)
 
 embedding_layer = Embedding(num_words,
        EMBEDDING_DIM,
        embeddings_initializer=Constant(embedding_matrix),
        input_length=MAX_SEQUENCE_LENGTH,
        trainable=False)
 sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
 embedded_sequences = embedding_layer(sequence_input)

embedding层的初始化设置

keras embeding设置初始值的两种方式

随机初始化Embedding

from keras.models import Sequential
from keras.layers import Embedding
import numpy as np
 
model = Sequential()
model.add(Embedding(1000, 64, input_length=10))
# the model will take as input an integer matrix of size (batch, input_length).
# the largest integer (i.e. word index) in the input should be no larger than 999 (vocabulary size).
# now model.output_shape == (None, 10, 64), where None is the batch dimension.
 
input_array = np.random.randint(1000, size=(32, 10))
 
model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)
print(output_array)
assert output_array.shape == (32, 10, 64)

使用weights参数指明embedding初始值

import numpy as np
import keras
 
m = keras.models.Sequential()
"""
可以通过weights参数指定初始的weights参数
因为Embedding层是不可导的 
梯度东流至此回,所以把embedding放在中间层是没有意义的,emebedding只能作为第一层
注意weights到embeddings的绑定过程很复杂,weights是一个列表
"""
embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, weights=[np.arange(3 * 2).reshape((3, 2))], mask_zero=True)
m.add(embedding) # 一旦add,就会自动调用embedding的build函数,
print(keras.backend.get_value(embedding.embeddings))
m.compile(keras.optimizers.RMSprop(), keras.losses.mse)
print(m.predict([1, 2, 2, 1, 2, 0]))
print(m.get_layer(index=0).get_weights())
print(keras.backend.get_value(embedding.embeddings))

给embedding设置初始值的第二种方式:使用initializer

import numpy as np
import keras
 
m = keras.models.Sequential()
"""
可以通过weights参数指定初始的weights参数
因为Embedding层是不可导的 
梯度东流至此回,所以把embedding放在中间层是没有意义的,emebedding只能作为第一层
给embedding设置权值的第二种方式,使用constant_initializer 
"""
embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, embeddings_initializer=keras.initializers.constant(np.arange(3 * 2, dtype=np.float32).reshape((3, 2))))
m.add(embedding)
print(keras.backend.get_value(embedding.embeddings))
m.compile(keras.optimizers.RMSprop(), keras.losses.mse)
print(m.predict([1, 2, 2, 1, 2]))
print(m.get_layer(index=0).get_weights())
print(keras.backend.get_value(embedding.embeddings))

关键的难点在于理清weights是怎么传入到embedding.embeddings张量里面去的。

Embedding是一个层,继承自Layer,Layer有weights参数,weights参数是一个list,里面的元素都是numpy数组。在调用Layer的构造函数的时候,weights参数就被存储到了_initial_weights变量

basic_layer.py 之Layer类

if 'weights' in kwargs:
   self._initial_weights = kwargs['weights']
  else:
   self._initial_weights = None

当把Embedding层添加到模型中、跟模型的上一层进行拼接的时候,会调用layer(上一层)函数,此处layer是Embedding实例,Embedding是一个继承了Layer的类,Embedding类没有重写__call__()方法,Layer实现了__call__()方法。

父类Layer的__call__方法调用子类的call()方法来获取结果。

所以最终调用的是Layer.__call__()。在这个方法中,会自动检测该层是否build过(根据self.built布尔变量)。

Layer.__call__函数非常重要。

def __call__(self, inputs, **kwargs):
  """Wrapper around self.call(), for handling internal references.
  If a Keras tensor is passed:
   - We call self._add_inbound_node().
   - If necessary, we `build` the layer to match
    the _keras_shape of the input(s).
   - We update the _keras_shape of every input tensor with
    its new shape (obtained via self.compute_output_shape).
    This is done as part of _add_inbound_node().
   - We update the _keras_history of the output tensor(s)
    with the current layer.
    This is done as part of _add_inbound_node().
  # Arguments
   inputs: Can be a tensor or list/tuple of tensors.
   **kwargs: Additional keyword arguments to be passed to `call()`.
  # Returns
   Output of the layer's `call` method.
  # Raises
   ValueError: in case the layer is missing shape information
    for its `build` call.
  """
  if isinstance(inputs, list):
   inputs = inputs[:]
  with K.name_scope(self.name):
   # Handle laying building (weight creating, input spec locking).
   if not self.built:#如果未曾build,那就要先执行build再调用call函数
    # Raise exceptions in case the input is not compatible
    # with the input_spec specified in the layer constructor.
    self.assert_input_compatibility(inputs)
 
    # Collect input shapes to build layer.
    input_shapes = []
    for x_elem in to_list(inputs):
     if hasattr(x_elem, '_keras_shape'):
      input_shapes.append(x_elem._keras_shape)
     elif hasattr(K, 'int_shape'):
      input_shapes.append(K.int_shape(x_elem))
     else:
      raise ValueError('You tried to call layer "' +
           self.name +
           '". This layer has no information'
           ' about its expected input shape, '
           'and thus cannot be built. '
           'You can build it manually via: '
           '`layer.build(batch_input_shape)`')
    self.build(unpack_singleton(input_shapes))
    self.built = True#这句话其实有些多余,因为self.build函数已经把built置为True了
 
    # Load weights that were specified at layer instantiation.
    if self._initial_weights is not None:#如果传入了weights,把weights参数赋值到每个变量,此处会覆盖上面的self.build函数中的赋值。
     self.set_weights(self._initial_weights)
 
   # Raise exceptions in case the input is not compatible
   # with the input_spec set at build time.
   self.assert_input_compatibility(inputs)
 
   # Handle mask propagation.
   previous_mask = _collect_previous_mask(inputs)
   user_kwargs = copy.copy(kwargs)
   if not is_all_none(previous_mask):
    # The previous layer generated a mask.
    if has_arg(self.call, 'mask'):
     if 'mask' not in kwargs:
      # If mask is explicitly passed to __call__,
      # we should override the default mask.
      kwargs['mask'] = previous_mask
   # Handle automatic shape inference (only useful for Theano).
   input_shape = _collect_input_shape(inputs)
 
   # Actually call the layer,
   # collecting output(s), mask(s), and shape(s).
   output = self.call(inputs, **kwargs)
   output_mask = self.compute_mask(inputs, previous_mask)
 
   # If the layer returns tensors from its inputs, unmodified,
   # we copy them to avoid loss of tensor metadata.
   output_ls = to_list(output)
   inputs_ls = to_list(inputs)
   output_ls_copy = []
   for x in output_ls:
    if x in inputs_ls:
     x = K.identity(x)
    output_ls_copy.append(x)
   output = unpack_singleton(output_ls_copy)
 
   # Inferring the output shape is only relevant for Theano.
   if all([s is not None
     for s in to_list(input_shape)]):
    output_shape = self.compute_output_shape(input_shape)
   else:
    if isinstance(input_shape, list):
     output_shape = [None for _ in input_shape]
    else:
     output_shape = None
 
   if (not isinstance(output_mask, (list, tuple)) and
     len(output_ls) > 1):
    # Augment the mask to match the length of the output.
    output_mask = [output_mask] * len(output_ls)
 
   # Add an inbound node to the layer, so that it keeps track
   # of the call and of all new variables created during the call.
   # This also updates the layer history of the output tensor(s).
   # If the input tensor(s) had not previous Keras history,
   # this does nothing.
   self._add_inbound_node(input_tensors=inputs,
         output_tensors=output,
         input_masks=previous_mask,
         output_masks=output_mask,
         input_shapes=input_shape,
         output_shapes=output_shape,
         arguments=user_kwargs)
 
   # Apply activity regularizer if any:
   if (hasattr(self, 'activity_regularizer') and
     self.activity_regularizer is not None):
    with K.name_scope('activity_regularizer'):
     regularization_losses = [
      self.activity_regularizer(x)
      for x in to_list(output)]
    self.add_loss(regularization_losses,
        inputs=to_list(inputs))
  return output

如果没有build过,会自动调用Embedding类的build()函数。Embedding.build()这个函数并不会去管weights,如果它使用的initializer没有传入,self.embeddings_initializer会变成随机初始化。

如果传入了,那么在这一步就能够把weights初始化好。

如果同时传入embeddings_initializer和weights参数,那么weights参数稍后会把Embedding#embeddings覆盖掉。

embedding.py Embedding类的build函数

def build(self, input_shape):
  self.embeddings = self.add_weight(
   shape=(self.input_dim, self.output_dim),
   initializer=self.embeddings_initializer,
   name='embeddings',
   regularizer=self.embeddings_regularizer,
   constraint=self.embeddings_constraint,
   dtype=self.dtype)
  self.built = True

综上,在keras中,使用weights给Layer的变量赋值是一个比较通用的方法,但是不够直观。keras鼓励多多使用明确的initializer,而尽量不要触碰weights。

以上这篇Keras—embedding嵌入层的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python获取Linux系统下的本机IP地址代码分享
Nov 07 Python
python文件操作之目录遍历实例分析
May 20 Python
在Python中使用AOP实现Redis缓存示例
Jul 11 Python
通过Python 接口使用OpenCV的方法
Apr 02 Python
pandas使用apply多列生成一列数据的实例
Nov 28 Python
简单了解python中的与或非运算
Sep 18 Python
Python爬虫爬取Bilibili弹幕过程解析
Oct 10 Python
基于python检查SSL证书到期情况代码实例
Apr 04 Python
Python基于模块Paramiko实现SSHv2协议
Apr 28 Python
Keras 利用sklearn的ROC-AUC建立评价函数详解
Jun 15 Python
python 爬取华为应用市场评论
May 29 Python
python利用while求100内的整数和方式
Nov 07 Python
Keras框架中的epoch、bacth、batch size、iteration使用介绍
Jun 10 #Python
Python3.9 beta2版本发布了,看看这7个新的PEP都是什么
Jun 10 #Python
JAVA及PYTHON质数计算代码对比解析
Jun 10 #Python
keras 使用Lambda 快速新建层 添加多个参数操作
Jun 10 #Python
matplotlib 生成的图像中无法显示中文字符的解决方法
Jun 10 #Python
Tensorflow中k.gradients()和tf.stop_gradient()用法说明
Jun 10 #Python
PySide2出现“ImportError: DLL load failed: 找不到指定的模块”的问题及解决方法
Jun 10 #Python
You might like
PHP中的use关键字概述
2014/07/23 PHP
php结合web uploader插件实现分片上传文件
2016/05/10 PHP
Yii2实现中国省市区三级联动实例
2017/02/08 PHP
js 第二代身份证号码的验证机制代码
2011/05/12 Javascript
通过遮罩层实现浮层DIV登录的js代码
2014/02/07 Javascript
javascript运行机制之this详细介绍
2014/02/07 Javascript
JS基于Mootools实现的个性菜单效果代码
2015/10/21 Javascript
各式各样的导航条效果css3结合jquery代码实现
2016/09/17 Javascript
jQuery css() 方法动态修改CSS属性
2016/09/25 Javascript
AngularJS的ng Http Request与response格式转换方法
2016/11/07 Javascript
ES6概念 ymbol.for()方法
2016/12/25 Javascript
关于vue-router的beforeEach无限循环的问题解决
2017/09/09 Javascript
解析Angular 2+ 样式绑定方式
2018/01/15 Javascript
ng-alain表单使用方式详解
2018/07/10 Javascript
jQuery实现文本显示一段时间后隐藏的方法分析
2019/06/20 jQuery
微信小程序实现底部弹出模态框
2020/11/18 Javascript
[06:09]辉夜杯主赛事开幕式
2015/12/25 DOTA
[33:42]LGD vs OG 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
详解Python中time()方法的使用的教程
2015/05/22 Python
django中的setting最佳配置小结
2017/11/21 Python
tensorflow实现将ckpt转pb文件的方法
2020/04/22 Python
有关pycharm登录github时有的时候会报错connection reset的问题
2020/09/15 Python
教你一分钟在win10终端成功安装Pytorch的方法步骤
2021/01/28 Python
CSS3 3D制作实战案例分析
2016/09/18 HTML / CSS
CSS3中box-shadow的用法介绍
2015/07/15 HTML / CSS
荷兰手表网站:Watch2Day
2018/07/02 全球购物
房地产财务管理制度
2014/02/02 职场文书
少儿节目主持串词
2014/04/02 职场文书
2015初中生物教研组工作总结
2015/07/21 职场文书
仓库管理制度范本
2015/08/04 职场文书
小学生纪律委员竞选稿
2015/11/19 职场文书
《7的乘法口诀》教学反思
2016/02/18 职场文书
《蓝鲸的眼睛》读后感5篇
2020/01/15 职场文书
浅谈golang 中time.After释放的问题
2021/05/05 Golang
手把手教你导入Go语言第三方库
2021/08/04 Golang
服务器nginx权限被拒绝解决案例
2022/09/23 Servers