Pandas 数据框增、删、改、查、去重、抽样基本操作方法


Posted in Python onApril 12, 2018

总括

pandas的索引函数主要有三种:

loc 标签索引,行和列的名称

iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0

ix 是 iloc 和 loc的合体

at是loc的快捷方式

iat是iloc的快捷方式

建立测试数据集:

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]})
print(df)
 a b c
0 1 a A
1 2 b B
2 3 c C

行操作

选择某一行

print(df.loc[1,:])
a 2
b b
c B
Name: 1, dtype: object

选择多行

print(df.loc[1:2,:])#选择1:2行,slice为1
 a b c
1 2 b B
2 3 c C
print(df.loc[::-1,:])#选择所有行,slice为-1,所以为倒序
 a b c
2 3 c C
1 2 b B
0 1 a A
print(df.loc[0:2:2,:])#选择0至2行,slice为2,等同于print(df.loc[0:2:2,:])因为只有3行
 a b c
0 1 a A
2 3 c C

条件筛选

普通条件筛选

print(df.loc[:,"a"]>2)#原理是首先做了一个判断,然后再筛选
0 False
1 False
2  True
Name: a, dtype: bool
print(df.loc[df.loc[:,"a"]>2,:])
 a b c
2 3 c C

另外条件筛选还可以集逻辑运算符 | for or, & for and, and ~for not

In [129]: s = pd.Series(range(-3, 4))
In [132]: s[(s < -1) | (s > 0.5)]
Out[132]: 
0 -3
1 -2
4 1
5 2
6 3
dtype: int64

isin

非索引列使用isin

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
In [143]: s.isin([2, 4, 6])
Out[143]: 
4 False
3 False
2  True
1 False
0  True
dtype: bool
In [144]: s[s.isin([2, 4, 6])]
Out[144]: 
2 2
0 4
dtype: int64

索引列使用isin

In [145]: s[s.index.isin([2, 4, 6])]
Out[145]: 
4 0
2 2
dtype: int64
# compare it to the following
In [146]: s[[2, 4, 6]]
Out[146]: 
2 2.0
4 0.0
6 NaN
dtype: float64

结合any()/all()在多列索引时

In [151]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
 .....:     'ids2': ['a', 'n', 'c', 'n']})
 .....: 
In [156]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [157]: row_mask = df.isin(values).all(1)
In [158]: df[row_mask]
Out[158]: 
 ids ids2 vals
0 a a  1

where()

In [1]: dates = pd.date_range('1/1/2000', periods=8)
In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
In [3]: df
Out[3]: 
     A   B   C   D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
In [162]: df.where(df < 0, -df)
Out[162]: 
     A   B   C   D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

DataFrame.where() differs from numpy.where()的区别

In [172]: df.where(df < 0, -df) == np.where(df < 0, df, -df)

当series对象使用where()时,则返回一个序列

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
In [159]: s[s > 0]
Out[159]: 
3 1
2 2
1 3
0 4
dtype: int64
In [160]: s.where(s > 0)
Out[160]: 
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
dtype: float64

抽样筛选

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

当在有权重筛选时,未赋值的列权重为0,如果权重和不为1,则将会将每个权重除以总和。random_state可以设置抽样的种子(seed)。axis可是设置列随机抽样。

In [105]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [106]: df2.sample(n = 3, weights = 'weight_column')
Out[106]: 
 col1 weight_column
1  8   0.4
0  9   0.5
2  7   0.1

增加行

df.loc[3,:]=4
  a b c
0 1.0 a A
1 2.0 b B
2 3.0 c C
3 4.0 4 4

插入行

pandas里并没有直接指定索引的插入行的方法,所以要自己设置

line = pd.DataFrame({df.columns[0]:"--",df.columns[1]:"--",df.columns[2]:"--"},index=[1])
df = pd.concat([df.loc[:0],line,df.loc[1:]]).reset_index(drop=True)#df.loc[:0]这里不能写成df.loc[0],因为df.loc[0]返回的是series
  a b c
0 1.0 a A
1 -- -- --
2 2.0 b B
3 3.0 c C
4 4.0 4 4

交换行

df.loc[[1,2],:]=df.loc[[2,1],:].values
 a b c
0 1 a A
1 3 c C
2 2 b B

删除行

df.drop(0,axis=0,inplace=True)
print(df)
 a b c
1 2 b B
2 3 c C

注意

在以时间作为索引的数据框中,索引是以整形的方式来的。

In [39]: dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5))
In [40]: dfl
Out[40]: 
     A   B   C   D
2013-01-01 1.075770 -0.109050 1.643563 -1.469388
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
2013-01-05 0.895717 0.805244 -1.206412 2.565646
In [41]: dfl.loc['20130102':'20130104']
Out[41]: 
     A   B   C   D
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

列操作

选择某一列

print(df.loc[:,"a"])
0 1
1 2
2 3
Name: a, dtype: int64

选择多列

print(df.loc[:,"a":"b"])
 a b
0 1 a
1 2 b
2 3 c

增加列,如果对已有的列,则是赋值

df.loc[:,"d"]=4
 a b c d
0 1 a A 4
1 2 b B 4
2 3 c C 4

交换两列的值

df.loc[:,['b', 'a']] = df.loc[:,['a', 'b']].values
print(df)
 a b c
0 a 1 A
1 b 2 B
2 c 3 C

删除列

1)直接del DF[‘column-name']

2)采用drop方法,有下面三种等价的表达式:

DF= DF.drop(‘column_name', 1);

DF.drop(‘column_name',axis=1, inplace=True)

DF.drop([DF.columns[[0,1,]]], axis=1,inplace=True)

df.drop("a",axis=1,inplace=True)
print(df)
 b c
0 a A
1 b B
2 c C

还有一些其他的功能:

切片df.loc[::,::]

选择随机抽样df.sample()

去重.duplicated()

查询.lookup

以上这篇Pandas 数据框增、删、改、查、去重、抽样基本操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python求列表交集的方法汇总
Nov 10 Python
Python命令启动Web服务器实例详解
Feb 23 Python
回调函数的意义以及python实现实例
Jun 20 Python
Python中装饰器学习总结
Feb 10 Python
python切片及sys.argv[]用法详解
May 25 Python
python 文件转成16进制数组的实例
Jul 09 Python
如何运行带参数的python脚本
Nov 15 Python
Python基于yield遍历多个可迭代对象
Mar 12 Python
详解用Python进行时间序列预测的7种方法
Mar 13 Python
解决pytorch 交叉熵损失输出为负数的问题
Jul 07 Python
序列化Python对象的方法
Aug 01 Python
Python insert() / append() 用法 Leetcode实战演示
Mar 31 Python
dataframe设置两个条件取值的实例
Apr 12 #Python
使用python编写监听端
Apr 12 #Python
Python实现针对给定单链表删除指定节点的方法
Apr 12 #Python
pandas系列之DataFrame 行列数据筛选实例
Apr 12 #Python
python:pandas合并csv文件的方法(图书数据集成)
Apr 12 #Python
用pandas按列合并两个文件的实例
Apr 12 #Python
Python中多个数组行合并及列合并的方法总结
Apr 12 #Python
You might like
php切割页面div内容的实现代码分享
2012/07/31 PHP
str_replace只替换一次字符串的方法
2013/04/09 PHP
php检查字符串中是否包含7位GSM字符的方法
2015/03/17 PHP
Laravel 5 框架入门(四)完结篇
2015/04/09 PHP
PHP编程计算日期间隔天数的方法
2017/04/26 PHP
PHP基于DateTime类解决Unix时间戳与日期互转问题【针对1970年前及2038年后时间戳】
2018/06/13 PHP
jquery Firefox3.5中操作select的问题
2009/07/10 Javascript
jQuery 标题的自动翻转实现代码
2009/10/14 Javascript
JavaScript 计算图片加载数量的代码
2011/01/01 Javascript
javascript 进阶篇2 CSS XML学习
2012/03/14 Javascript
JavaScript支持的最大递归调用次数分析
2014/06/24 Javascript
Angular.js指令学习中一些重要属性的用法教程
2017/05/24 Javascript
node.js中使用Export和Import的方法
2017/09/18 Javascript
浅谈Vue.js中ref ($refs)用法举例总结
2017/12/19 Javascript
傻瓜式解读koa中间件处理模块koa-compose的使用
2018/10/30 Javascript
自定义javascript验证框架示例【附源码下载】
2019/05/31 Javascript
[01:50]2014DOTA2西雅图邀请赛 专访欢乐周宝龙
2014/07/08 DOTA
[54:06]OG vs TNC 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
python 获取et和excel的版本号
2009/04/09 Python
在Python的Tornado框架中实现简单的在线代理的教程
2015/05/02 Python
python+selenium实现登录账户后自动点击的示例
2017/12/22 Python
Django 路由系统URLconf的使用
2018/10/11 Python
从0开始的Python学习016异常
2019/04/08 Python
python爬虫 urllib模块url编码处理详解
2019/08/20 Python
通过实例解析Python调用json模块
2019/12/11 Python
Django多数据库联用实现方法解析
2020/11/12 Python
html5使用Drag事件编辑器拖拽上传图片的示例代码
2017/08/22 HTML / CSS
Gap中国官网:美式休闲风服饰
2017/02/05 全球购物
为什么如下的代码int a=100,b=100;long int c=a * b;不能工作
2013/11/29 面试题
.NET面试问题集
2015/12/08 面试题
师德师风建设方案
2014/05/08 职场文书
节能环保家庭事迹材料
2014/08/27 职场文书
贯彻落实“八项规定”思想汇报
2014/09/13 职场文书
教师党员学习十八届四中全会思想汇报
2014/11/03 职场文书
2016关于预防职务犯罪的心得体会
2016/01/21 职场文书
Python趣味挑战之教你用pygame画进度条
2021/05/31 Python