详解用python实现简单的遗传算法


Posted in Python onJanuary 02, 2018

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

遗传算法介绍

遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。

f(x) = 10 * sin( 5x ) + 7 * cos( 4x ),    0 <=  x <= 10

1、将自变量x进行编码

取基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

2、计算目标函数值

根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。

3、适应度函数

适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。

4、自然选择

自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:

假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。

5、繁殖

假设个体a、b的基因是

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]

这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]

交换后为:

a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]

6、突变

遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
pop = geneEncoding(pop_size, chrom_length)

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

def geneEncoding(pop_size, chrom_length): 
 pop = [[]] 
 for i in range(pop_size): 
  temp = [] 
  for j in range(chrom_length): 
   temp.append(random.randint(0, 1)) 
  pop.append(temp) 
 return pop[1:]

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

# 0.0 coding:utf-8 0.0 
# 解码并计算值 
import math 
def decodechrom(pop, chrom_length): 
 temp = [] 
 for i in range(len(pop)): 
  t = 0 
  for j in range(chrom_length): 
   t += pop[i][j] * (math.pow(2, j)) 
  temp.append(t) 
 return temp 
 
 
def calobjValue(pop, chrom_length, max_value): 
 temp1 = [] 
 obj_value = [] 
 temp1 = decodechrom(pop, chrom_length) 
 for i in range(len(temp1)): 
  x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1) 
  obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) 
 return obj_value

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

# 0.0 coding:utf-8 0.0 
# 淘汰(去除负值) 
def calfitValue(obj_value): 
 fit_value = [] 
 c_min = 0 
 for i in range(len(obj_value)): 
  if(obj_value[i] + c_min > 0): 
   temp = c_min + obj_value[i] 
  else: 
   temp = 0.0 
  fit_value.append(temp) 
 return fit_value

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

# 0.0 coding:utf-8 0.0 
# 选择 
import random 
def sum(fit_value): 
 total = 0 
 for i in range(len(fit_value)): 
  total += fit_value[i] 
 return total 
def cumsum(fit_value): 
 for i in range(len(fit_value)-2, -1, -1): 
  t = 0 
  j = 0 
  while(j <= i): 
   t += fit_value[j] 
   j += 1 
  fit_value[i] = t 
  fit_value[len(fit_value)-1] = 1 
def selection(pop, fit_value): 
 newfit_value = [] 
 # 适应度总和 
 total_fit = sum(fit_value) 
 for i in range(len(fit_value)): 
  newfit_value.append(fit_value[i] / total_fit) 
 # 计算累计概率 
 cumsum(newfit_value) 
 ms = [] 
 pop_len = len(pop) 
 for i in range(pop_len): 
  ms.append(random.random()) 
 ms.sort() 
 fitin = 0 
 newin = 0 
 newpop = pop 
 # 转轮盘选择法 
 while newin < pop_len: 
  if(ms[newin] < newfit_value[fitin]): 
   newpop[newin] = pop[fitin] 
   newin = newin + 1 
  else: 
   fitin = fitin + 1 
 pop = newpop

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。

选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

# 0.0 coding:utf-8 0.0 
# 交配 
import random 
def crossover(pop, pc): 
 pop_len = len(pop) 
 for i in range(pop_len - 1): 
  if(random.random() < pc): 
   cpoint = random.randint(0,len(pop[0])) 
   temp1 = [] 
   temp2 = [] 
   temp1.extend(pop[i][0:cpoint]) 
   temp1.extend(pop[i+1][cpoint:len(pop[i])]) 
   temp2.extend(pop[i+1][0:cpoint]) 
   temp2.extend(pop[i][cpoint:len(pop[i])]) 
   pop[i] = temp1 
   pop[i+1] = temp2

变异:

# 0.0 coding:utf-8 0.0 
# 基因突变 
import random 
def mutation(pop, pm): 
 px = len(pop) 
 py = len(pop[0]) 
 for i in range(px): 
  if(random.random() < pm): 
   mpoint = random.randint(0, py-1) 
   if(pop[i][mpoint] == 1): 
    pop[i][mpoint] = 0 
   else: 
    pop[i][mpoint] = 1

整个遗传算法的实现完成了,总的调用入口代码如下

# 0.0 coding:utf-8 0.0 
import matplotlib.pyplot as plt 
import math 
from calobjValue import calobjValue 
from calfitValue import calfitValue 
from selection import selection 
from crossover import crossover 
from mutation import mutation 
from best import best 
from geneEncoding import geneEncoding 
print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)' 
# 计算2进制序列代表的数值 
def b2d(b, max_value, chrom_length): 
 t = 0 
 for j in range(len(b)): 
  t += b[j] * (math.pow(2, j)) 
 t = t * max_value / (math.pow(2, chrom_length) - 1) 
 return t 
pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)] 
pop = geneEncoding(pop_size, chrom_length) 
for i in range(pop_size): 
 obj_value = calobjValue(pop, chrom_length, max_value)  # 个体评价 
 fit_value = calfitValue(obj_value)  # 淘汰 
 best_individual, best_fit = best(pop, fit_value)  # 第一个存储最优的解, 第二个存储最优基因 
 results.append([best_fit, b2d(best_individual, max_value, chrom_length)]) 
 selection(pop, fit_value)  # 新种群复制 
 crossover(pop, pc)  # 交配 
 mutation(pop, pm)  # 变异 
results = results[1:] 
results.sort() 
X = [] 
Y = [] 
for i in range(500): 
 X.append(i) 
 t = results[i][0] 
 Y.append(t) 
plt.plot(X, Y) 
plt.show()

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

详解用python实现简单的遗传算法

完整代码可以在github 查看

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python网络编程学习笔记(七):HTML和XHTML解析(HTMLParser、BeautifulSoup)
Jun 09 Python
使用url_helper简化Python中Django框架的url配置教程
May 30 Python
Django REST为文件属性输出完整URL的方法
Dec 18 Python
python实现微信跳一跳辅助工具步骤详解
Jan 04 Python
详解tensorflow训练自己的数据集实现CNN图像分类
Feb 07 Python
Windows 7下Python Web环境搭建图文教程
Mar 20 Python
python3.4实现邮件发送功能
May 28 Python
详解python中的time和datetime的常用方法
Jul 08 Python
Python如何根据时间序列数据作图
May 12 Python
python 删除excel表格重复行,数据预处理操作
Jul 06 Python
python3定位并识别图片验证码实现自动登录功能
Jan 29 Python
Python运算符+与+=的方法实例
Feb 18 Python
一个Python最简单的接口自动化框架
Jan 02 #Python
利用Hyperic调用Python实现进程守护
Jan 02 #Python
python实现TF-IDF算法解析
Jan 02 #Python
python实现xlsx文件分析详解
Jan 02 #Python
Python实现KNN邻近算法
Jan 28 #Python
Python+matplotlib+numpy绘制精美的条形统计图
Jan 02 #Python
基于Python实现的ID3决策树功能示例
Jan 02 #Python
You might like
mysql 中InnoDB和MyISAM的区别分析小结
2008/04/15 PHP
php检查函数必传参数是否存在的实例详解
2017/08/28 PHP
JQuery Tips(2) 关于$()包装集你不知道的
2009/12/14 Javascript
容易被忽略的JS脚本特性
2011/09/13 Javascript
详谈jQuery操纵DOM元素属性 attr()和removeAtrr()方法
2015/01/22 Javascript
JavaScript中Function()函数的使用教程
2015/06/04 Javascript
js鼠标点击图片切换效果实现代码
2015/11/19 Javascript
jquery插件格式实例分析
2016/06/16 Javascript
jQuery与JS加载事件用法分析
2016/09/04 Javascript
jQuery ajax 当async为false时解决同步操作失败的问题
2016/11/18 Javascript
Node连接mysql数据库方法介绍
2017/02/07 Javascript
react系列从零开始_简单谈谈react
2017/07/06 Javascript
详解vue.js根据不同环境(正式、测试)打包到不同目录
2018/07/13 Javascript
javascript-hashchange事件和历史状态管理实例分析
2020/04/18 Javascript
node koa2 ssr项目搭建的方法步骤
2020/12/11 Javascript
vue-cli中实现响应式布局的方法
2021/03/02 Vue.js
[37:22]DOTA2上海特级锦标赛D组资格赛#2 Liquid VS VP第一局
2016/02/28 DOTA
Python基于PycURL实现POST的方法
2015/07/25 Python
Python使用设计模式中的责任链模式与迭代器模式的示例
2016/03/02 Python
python 中文件输入输出及os模块对文件系统的操作方法
2018/08/27 Python
django框架自定义模板标签(template tag)操作示例
2019/06/24 Python
python创建学生成绩管理系统
2019/11/22 Python
Django基于客户端下载文件实现方法
2020/04/21 Python
python正则表达式re.match()匹配多个字符方法的实现
2021/01/27 Python
事业单位个人应聘自荐信
2013/09/21 职场文书
毕业生在校学习的自我评价分享
2013/10/08 职场文书
中专自我鉴定
2014/02/05 职场文书
机械制造毕业生求职信
2014/03/03 职场文书
社区健康教育实施方案
2014/03/18 职场文书
主题团日活动总结
2014/06/25 职场文书
个人工作违纪检讨书
2015/05/05 职场文书
拔河比赛新闻稿
2015/07/17 职场文书
感恩老师主题班会
2015/08/12 职场文书
开网店计划分析
2019/07/30 职场文书
go 原生http web 服务跨域restful api的写法介绍
2021/04/27 Golang
javascript进阶篇深拷贝实现的四种方式
2022/07/07 Javascript