Posted in Python onJanuary 02, 2018
python脚本实现xlsx文件解析,供大家参考,具体内容如下
环境配置:
1.系统环境:Windows 7 64bit
2.编译环境:Python3.4.3
3.依赖库: os sys xlrd re
4.其他工具:none
5.前置条件:待处理的xlsx文件
脚本由来
最近的工作是做测试,而有一项任务呢,就是分析每天机器人巡检时采集的数据,包括各种传感器,CO2、O2、噪声等等,每天的数据也有上千条,通过站控的导出数据功能,会把数据库里面导出成xlsx文件,而这项任务要分析一下当天采集的数据是否在正常范围,要计算摄像头的识别率和识别准确率,自己傻呵呵的每天都在手动操作,突然觉得很浪费时间,索性写个python脚本吧,这样每天一条命令,就能得到自己想看的数据结果。每天至少节省10分钟!
这是要解析的xlsx文件:
一般手动就得筛选、排序、打开计算器计算 - - 繁琐枯燥乏味
还是python大法好
代码浅析
流程图
脚本demo
#-*- coding:utf-8 -*- import xlrd import os import sys import logging import re #logging.basicConfig(level=logging.DEBUG) xfile = sys.argv[1] dateList = [] InspectionType = [] InspectionRresult = [] def load_data(): CO2Type = [] O2Type = [] NoiseType = [] SupwareType = [] TowareType = [] TemperatureType = [] HumidityType = [] InfraredType = [] CO2Result = [] O2Result = [] NoiseResult = [] SupwareResult = [] TowareResult = [] TemperatureResult = [] HumidityResult = [] InfraredResult = [] logging.debug(InspectionType) logging.debug(InspectionRresult) for index, value in enumerate(InspectionType): if value == "二氧化碳": #CO2Type CO2Type.extend(value) logging.debug(index) logging.debug("CO2 RESULT: "+InspectionRresult[index]) CO2Result.append(InspectionRresult[index]) if value == "氧气传感器": #O2Type O2Type.extend(value) O2Result.append(InspectionRresult[index]) if value == "噪声传感器": #NoiseType NoiseType.extend(value) NoiseResult.append(InspectionRresult[index]) if value == "局放(超声波测量)": #SupwareType SupwareType.extend(value) SupwareResult.append(InspectionRresult[index]) if value == "局放(地电波测量)": #SupwareType TowareType.extend(value) TowareResult.append(InspectionRresult[index]) if value == "温度传感器": #TemperatureType TemperatureType.extend(value) TemperatureResult.append(InspectionRresult[index]) if value == "湿度传感器": #TemperatureType HumidityType.extend(value) HumidityResult.append(InspectionRresult[index]) if value == "温度(红外测量)": #TemperatureType InfraredType.extend(value) InfraredResult.append(InspectionRresult[index]) logging.debug(CO2Result) logging.debug(O2Result) logging.debug(NoiseResult) logging.debug(SupwareResult) logging.debug(TowareResult) logging.debug(TemperatureResult) logging.debug(HumidityResult) logging.debug(InfraredResult) return CO2Result,O2Result,NoiseResult,SupwareResult,TowareResult,TemperatureResult,HumidityResult,InfraredResult def get_data_print(co2,o2,noise,supware,toware,temperature,humidity,infrared): co2 = list(map(eval,co2)) o2 = list(map(eval,o2)) noise = list(map(eval,noise)) supware = list(map(eval,supware)) toware = list(map(eval,toware)) temperature = list(map(eval,temperature)) humidity = list(map(eval,humidity)) infrared = list(map(eval,infrared)) co2Min = min(co2) co2Max = max(co2) logging.debug("CO2 min value :~~"+str(co2Min)) logging.debug("CO2 max value :~~"+str(co2Max)) o2Min = min(o2) o2Max = max(o2) noiseMin = min(noise) noiseMax = max(noise) supwareMin = min(supware) supwareMax = max(supware) towareMin = min(toware) towareMax = max(toware) temperatureMin = min(temperature) temperatureMax = max(temperature) humidityMin = min(humidity) humidityMax = max(humidity) infraredMin = min(infrared) infraredMax = max(infrared) print("CO2 values :",co2Min,'~~~~~~~',co2Max) print("o2 values :",o2Min,'~~~~~~~',o2Max) print("noise values :",noiseMin,'~~~~~~~',noiseMax) print("supware values :",supwareMin,'~~~~~~~',supwareMax) print("toware values :",towareMin,'~~~~~~~',towareMax) print("temperature values :",temperatureMin,'~~~~~~~',temperatureMax) print("humidity values :",humidityMin,'~~~~~~~',humidityMax) print("infrared values :",infraredMin,'~~~~~~~',infraredMax) def cal_picture(): result7to19List = [] result19to7List = [] count7to19List = [] count19to7List = [] count7to19Dict = {} count19to7Dict = {} failfind7to19cnt = 0 failfind19to7cnt = 0 photoType = [] photoDateList = [] allPhotoResult = [] for index,value in enumerate(InspectionType): #按照巡检类型筛选出视觉类,通过索引值同步时间、巡检结果 if value == "开关(视觉识别)" or value == "旋钮(视觉识别)" or \ value == "电流表(视觉识别)" or value == "电压表(视觉识别)": photoType.extend(value) photoDateList.append(dateList[index]) allPhotoResult.append(InspectionRresult[index]) for index,value in enumerate(photoDateList): if value[-8:] > '07:00:00' and value[-8:] < '19:00:00': result7to19List.append(allPhotoResult[index]) if value[-8:] > '19:00:00' or value[-8:] < '7:00:00': result19to7List.append(allPhotoResult[index]) logging.debug(result7to19List[-20:]) logging.debug(result19to7List[:20]) noduplicate7to19Set=set(result7to19List) #里面无重复项 for item in noduplicate7to19Set: count7to19List.append(result7to19List.count(item)) logging.debug(count7to19List) count7to19Dict= dict(zip(list(noduplicate7to19Set),count7to19List)) noduplicate19to7Set=set(result19to7List) for item in noduplicate19to7Set: count19to7List.append(result19to7List.count(item)) count19to7Dict= dict(zip(list(noduplicate19to7Set),count19to7List)) logging.debug(count7to19Dict) None7to19cnt = count7to19Dict[''] all7to19cnt = len(result7to19List) None19to7cnt = count19to7Dict[''] all19to7cnt = len(result19to7List) logging.debug(None7to19cnt) for key in count7to19Dict: if count7to19Dict[key] == 1 : failfind7to19cnt = failfind7to19cnt+1 if re.match('识别失败:*',key): failfind7to19cnt = failfind7to19cnt+ count7to19Dict[key] for key in count19to7Dict: if count19to7Dict[key] == 1 : failfind19to7cnt = failfind19to7cnt+1 if re.match('识别失败:*',key): failfind19to7cnt = failfind19to7cnt+count19to7Dict[key] logging.debug(all19to7cnt) print("7:00 ~~~ 19:00 识别率:",(all7to19cnt-None7to19cnt)/all7to19cnt) print("7:00 ~~~ 19:00 识别准确率:",(all7to19cnt-None7to19cnt-failfind7to19cnt)/(all7to19cnt-None7to19cnt)) print("19:00 ~~~ 7:00 识别率:",(all19to7cnt-None19to7cnt)/all19to7cnt) print("19:00 ~~~ 7:00 识别准确率:",(all19to7cnt-None19to7cnt-failfind19to7cnt)/(all19to7cnt-None19to7cnt)) #读取xlsx文件 xlsxdata=xlrd.open_workbook(xfile) tablepage=xlsxdata.sheets()[0] dateList.extend(tablepage.col_values(5)) InspectionType.extend(tablepage.col_values(3)) InspectionRresult.extend(tablepage.col_values(6)) cal_picture() co2,o2,noise,supware,toware,temperature,humidity,infrared=load_data() get_data_print(co2,o2,noise,supware,toware,temperature,humidity,infrared)
结果图
回顾与总结
渐渐体会到python脚本的优势所在。
python在代码保密上可能是解释性语言共有的小小缺陷,做项目还是C/C++,当然是指传统项目
写python很开心啊
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
python实现xlsx文件分析详解
- Author -
水似冰声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@